【題目】設(shè)等差數(shù)列的首項(xiàng)和公差都是非負(fù)的整數(shù),項(xiàng)數(shù)不少于3,且各項(xiàng)和為,則這樣的數(shù)列共有

A2個(gè) B3個(gè) C4個(gè) D5個(gè)

【答案】C

【解析】

試題設(shè)等差數(shù)列首項(xiàng)為a,公差為d,依題意有na+n(n1)d=972,

即[2a+(n-1)d]n=2×972 因?yàn)閚為不小于3的自然數(shù),97為素?cái)?shù),故n的值只可能為97,2×97,972,2×972四者之一若d>0,則知2×972≥n(n-1)d≥n(n-1)>(n-1)2故只可能有n=97于是 a+48d=97

此時(shí)可得n=97,d=1,a=49 n=97,d=2,a=1若d=0時(shí),則由(3)得na=972,此時(shí)n=97,a=97 n=972,a=1故符合條件的數(shù)列共有4個(gè),故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中

是函數(shù)的極值點(diǎn),求實(shí)數(shù)a的值;

若對(duì)任意的為自然對(duì)數(shù)的底數(shù),都有成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰三角形PAD所在平面與菱形ABCD所在平面互相垂直,已知點(diǎn)E,F(xiàn),M,N分別為邊BA,BC,AD,AP的中點(diǎn).

(1)求證:AC⊥PE;

(2)求證:PF∥平面BNM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一輛汽車從A市出發(fā)沿海岸一條筆直公路以的速度向東勻速行駛,汽車開(kāi)動(dòng)時(shí),在A市南偏東方向距A500km且與海岸距離為300km的海上B處有一艘快艇與汽車同時(shí)出發(fā),要把一份文件交給這輛汽車的司機(jī).

1)快艇至少以多大的速度行駛才能把文件送到司機(jī)手中?

2)求快艇以最小速度行駛時(shí)的行駛方向與所成角的大。

3)若快艇每小時(shí)最快行駛,快艇應(yīng)如何行駛才能盡快把文件交到司機(jī)手中?最快需多長(zhǎng)時(shí)間?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】南京市自年成功創(chuàng)建“國(guó)家衛(wèi)生城市”以來(lái),已經(jīng)連續(xù)三次通過(guò)“國(guó)家衛(wèi)生城市”復(fù)審,年下半年,南京將迎來(lái)第四次復(fù)審.為了了解市民綠色出行的意識(shí),現(xiàn)從某單位隨機(jī)抽取名職工,統(tǒng)計(jì)了他們一周內(nèi)路邊停車的時(shí)間(單位:),整理得到數(shù)據(jù)分組及頻率分布直方圖如下:

組號(hào)

分組

頻數(shù)

1)從該單位隨機(jī)選取一名職工,試估計(jì)其在該周內(nèi)路邊停車的時(shí)間少于小時(shí)的概率;

2)求頻率分布直方圖中的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若關(guān)于的方程只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)的取值范圍;

2)若當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;

3)探究函數(shù)在區(qū)間上的最大值(直接寫(xiě)出結(jié)果,不需給出演算步驟).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)等差數(shù)列的前項(xiàng)和為已知,

,則下列結(jié)論正確的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線上一點(diǎn)到其焦點(diǎn)的距離為.

(1)求的值;

(2)若斜率為的直線與拋物線交于、兩點(diǎn),點(diǎn)為拋物線上一點(diǎn),其橫坐標(biāo)為1,記直線的斜率為,直線的斜率為,試問(wèn):是否為定值?并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案