【題目】已知函數(shù)f(x)=sin(π﹣2x),g(x)=2cos2x,則下列結(jié)論正確的是(
A.函數(shù)f(x)在區(qū)間[ ]上為增函數(shù)
B.函數(shù)y=f(x)+g(x)的最小正周期為2π
C.函數(shù)y=f(x)+g(x)的圖象關于直線x= 對稱
D.將函數(shù)f(x)的圖象向右平移 個單位,再向上平移1個單位,得到函數(shù)g(x)的圖象

【答案】C
【解析】解:∵f(x)=sin(π﹣2x)=sin2x,y=sinx在[0, ]上單調(diào)遞增,在區(qū)間[ ,π]上單調(diào)遞減, ∴f(x)=sin2x在區(qū)間[ ]上單調(diào)遞減,故A錯誤;
又g(x)=2cos2x=1+cos2x,
∴y=f(x)+g(x)=cos2x+sin2x+1= sin(2x+ )+1,
∴其周期T=π,由2x+ =kπ+ (k∈Z)得,x= + ,k∈Z,當k=0時,x= ;
故B錯誤,C正確;
對于D,f(x)=sin2x f(x﹣ )=sin[2(x﹣ )]=﹣sin2x≠1+cos2x=g(x),
故D錯誤.
綜上所述,只有C正確.
故選C.
【考點精析】本題主要考查了兩角和與差的正弦公式和二倍角的余弦公式的相關知識點,需要掌握兩角和與差的正弦公式:;二倍角的余弦公式:才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若,求函數(shù)的極值;

(Ⅱ)若,,,使得),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在銳角△ABC中,a、b、c分別為∠A、∠B、∠C所對的邊,且 a=2csinA.
(1)確定∠C的大;
(2)若c= ,求△ABC周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列向量組中,能作為表示它們所在平面內(nèi)所有向量的一組基底的是( )
A.=(0,0) =(1,﹣2)
B.=(﹣1,2) =(3,7)
C.=(3,5) =(6,10)
D.=(2,﹣3) =( ,﹣

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)設,試討論單調(diào)性;

(2)設,當時,任意,存在,使,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿a1=a,a2=b,3an+2﹣5an+1+2an=0(n≥0,n∈N),求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線畫出的是某多面體的三視圖,則該多面體的各面中,面積最大的是(
A.8
B.
C.12
D.16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量 =(ex , lnx+k), =(1,f(x)), (k為常數(shù),e是自然對數(shù)的底數(shù)),曲線y=f(x)在點(1,f(1))處的切線與y軸垂直,F(xiàn)(x)=xexf′(x).
(1)求k的值及F(x)的單調(diào)區(qū)間;
(2)已知函數(shù)g(x)=﹣x2+2ax(a為正實數(shù)),若對任意x2∈[0,1],總存在x1∈(0,+∞),使得g(x2)<F(x1),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正三棱臺上底邊為3,下底邊為6,高為1,求斜高與側(cè)棱長.

查看答案和解析>>

同步練習冊答案