【題目】設(shè),記.

1)若,,當(dāng)時,求的最大值;

2)若,,且方程有兩個不相等的實根、,求的取值范圍;

3)若,,且ab、c是三角形的三邊長,試求滿足等式:有解的最大的x的范圍.

【答案】112;(2;(3.

【解析】

1)根據(jù),,得到關(guān)于的方程組,解出,利用配方法,結(jié)合的取值范圍,得到最大值;(2)根據(jù)方程有兩個不相等的實根、,求出的表達(dá)值,結(jié)合不等式的性質(zhì)求出的范圍;(3)問題等價于存在使得成立,令,根據(jù)函數(shù)的單調(diào)性求出的范圍,得到答案.

1)因為,

所以,解得.

所以

因為,所以

所以當(dāng),即時,取得最大值為.

2,

因為,所以,

,,

,則

因為,所以

所以,,且,

所以

所以的范圍為.

3)當(dāng)時,有解

等價于,存在使得成立,

因為,且,

顯然,,

所以,

所以為減函數(shù),

因為,是三角形的三邊,所以,即

所以,

是減函數(shù),

所以存在使得,

所以的范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),若存在實數(shù),使得上的奇函數(shù),則稱是位差值為的“位差奇函數(shù)”.

1)判斷函數(shù)是否為位差奇函數(shù)?說明理由;

2)若是位差值為的位差奇函數(shù),求的值;

3)若對任意屬于區(qū)間中的都不是位差奇函數(shù),求實數(shù)滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】半圓的直徑的兩端點為,點在半圓及直徑上運動,若將點的縱坐標(biāo)伸長到原來的2倍(橫坐標(biāo)不變)得到點,記點的軌跡為曲線.

(1)求曲線的方程;

(2)若稱封閉曲線上任意兩點距離的最大值為該曲線的直徑,求曲線直徑”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列滿足,,.

1)求證:數(shù)列為等比數(shù)列;

2)對于大于的正整數(shù)、(其中),若、、三個數(shù)經(jīng)適當(dāng)排序后能構(gòu)成等差數(shù)列,求符合條件的數(shù)組;

3)若數(shù)列滿足,是否存在實數(shù),使得數(shù)列是單調(diào)遞增數(shù)列?若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,給定個整點,其中.

(Ⅰ)當(dāng),從上面的個整點中任取兩個不同的整點,求的所有可能值;

(Ⅱ)從上面個整點中任取個不同的整點,.

i)證明:存在互不相同的四個整點,滿足,;

ii)證明:存在互不相同的四個整點,滿足,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在等腰梯形中,兩腰,底邊的三等分點,的中點.分別沿將四邊形折起,使重合于點,得到如圖2所示的幾何體.在圖2中,分別為的中點.

(1)證明:平面

(2)求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,沿河有AB兩城鎮(zhèn),它們相距千米.以前,兩城鎮(zhèn)的污水直接排入河里,現(xiàn)為保護(hù)環(huán)境,污水需經(jīng)處理才能排放.兩城鎮(zhèn)可以單獨建污水處理廠,或者聯(lián)合建污水處理廠(在兩城鎮(zhèn)之間或其中一城鎮(zhèn)建廠,用管道將污水從各城鎮(zhèn)向污水處理廠輸送).依據(jù)經(jīng)驗公式,建廠的費用為(萬元),表示污水流量;鋪設(shè)管道的費用(包括管道費)(萬元),表示輸送污水管道的長度(千米).已知城鎮(zhèn)A和城鎮(zhèn)B的污水流量分別為,兩城鎮(zhèn)連接污水處理廠的管道總長為千米.假定:經(jīng)管道輸送的污水流量不發(fā)生改變,污水經(jīng)處理后直接排入河中.請解答下列問題(結(jié)果精確到):

1)若在城鎮(zhèn)A和城鎮(zhèn)B單獨建廠,共需多少總費用?

2)考慮聯(lián)合建廠可能節(jié)約總投資,設(shè)城鎮(zhèn)A到擬建廠的距離為千米,求聯(lián)合建廠的總費用的函數(shù)關(guān)系式,并求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的各項均為正數(shù),且,對于任意的,均有,.

1)求證:是等比數(shù)列,并求出的通項公式;

2)若數(shù)列中去掉的項后,余下的項組成數(shù)列,求;

3)設(shè),數(shù)列的前項和為,是否存在正整數(shù),使得、、成等比數(shù)列,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案