【題目】如圖1,在等腰梯形中,兩腰,底邊的三等分點(diǎn),的中點(diǎn).分別沿將四邊形折起,使重合于點(diǎn),得到如圖2所示的幾何體.在圖2中,分別為的中點(diǎn).

(1)證明:平面

(2)求幾何體的體積.

【答案】1)見解析(2

【解析】

(1)根據(jù)線面垂直的判定定理,可證平面,所以平面平面,再根據(jù)面面垂直的性質(zhì)定理,證出,即可證出平面

(2)由題可知,幾何體為三棱柱,它的體積與以為底面,以為高的三棱柱的體積相等,即可求出.

(1)證明:連接,由圖1知,四邊形為菱形,且

所以是正三角形,從而.

同理可證,

所以平面.

,所以平面,

因?yàn)?/span>平面,

所以平面平面.

易知,且的中點(diǎn),所以,

所以平面.

(2)(1)可知,幾何體為三棱柱,它的體積與以為底面,以為高的三棱柱的體積相等.

因?yàn)?/span>.

所以,

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線、與平面、滿足,,,則下列命題中正確的是(

A.的充分不必要條件

B.的充要條件

C.設(shè),則的必要不充分條件

D.設(shè),則的既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將一顆均勻的骰子擲兩次,第一次得到的點(diǎn)數(shù)記為,第一次得到的點(diǎn)數(shù)記為,則方程組有唯一解的概率是___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線相切.

(Ⅰ)求橢圓方程;

(Ⅱ)設(shè)為橢圓右頂點(diǎn),過橢圓的右焦點(diǎn)的直線與橢圓交于,兩點(diǎn)(異于),直線,分別交直線,兩點(diǎn). 求證:,兩點(diǎn)的縱坐標(biāo)之積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),,記.

1)若,,當(dāng)時(shí),求的最大值;

2)若,,且方程有兩個(gè)不相等的實(shí)根、,求的取值范圍;

3)若,,且a、b、c是三角形的三邊長(zhǎng),試求滿足等式:有解的最大的x的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,是某海灣旅游區(qū)的一角,其中,為了營(yíng)造更加優(yōu)美的旅游環(huán)境,旅游區(qū)管委會(huì)決定在直線海岸上分別修建觀光長(zhǎng)廊AC,其中是寬長(zhǎng)廊,造價(jià)是元/米,是窄長(zhǎng)廊,造價(jià)是元/米,兩段長(zhǎng)廊的總造價(jià)為120萬元,同時(shí)在線段上靠近點(diǎn)的三等分點(diǎn)處建一個(gè)觀光平臺(tái),并建水上直線通道(平臺(tái)大小忽略不計(jì)),水上通道的造價(jià)是元/米.

(1) 若規(guī)劃在三角形區(qū)域內(nèi)開發(fā)水上游樂項(xiàng)目,要求的面積最大,那么的長(zhǎng)度分別為多少米?

(2) 在(1)的條件下,建直線通道還需要多少錢?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,點(diǎn),是曲線上的任意一點(diǎn),動(dòng)點(diǎn)滿足

1)求點(diǎn)的軌跡方程;

2)經(jīng)過點(diǎn)的動(dòng)直線與點(diǎn)的軌跡方程交于兩點(diǎn),在軸上是否存在定點(diǎn)(異于點(diǎn)),使得?若存在,求出的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方體的棱長(zhǎng)為2EF、G分別為的中點(diǎn),給出下列命題:

①異面直線EFAG所成的角的余弦值為;

②過點(diǎn)E、F、G作正方體的截面,所得的截面的面積是;

平面

④三棱錐的體積為1

其中正確的命題是_____________(填寫所有正確的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,圓,動(dòng)圓P與圓M外切并且與圓N內(nèi)切,圓心P的軌跡為曲線C.

1)求曲線C的方程;

2)設(shè)不經(jīng)過點(diǎn)的直線l與曲線C相交于A,B兩點(diǎn),直線QA與直線QB的斜率均存在且斜率之和為-2,證明:直線l過定點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案