【題目】“新冠肺炎”疫情的控制需要根據(jù)大數(shù)據(jù)進(jìn)行分析,并有針對性的采取措施.下圖是甲、乙兩個省份從2月7日到2月13日一周內(nèi)的新增“新冠肺炎”確診人數(shù)的折線圖.根據(jù)圖中甲、乙兩省的數(shù)字特征進(jìn)行比對,下列說法錯誤的是( )
A.2月7日到2月13日甲省的平均新增“新冠肺炎”確診人數(shù)低于乙省
B.2月7日到2月13日甲省的單日新增“新冠肺炎”確診人數(shù)最大值小于乙省
C.2月7日到2月13日乙省相對甲省的新增“新冠甲省肺炎”確診人數(shù)的波動大
D.后四日(2月10日至13日)乙省每日新增“新冠肺炎”確診人數(shù)均比甲省多
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是矩形,平面平面,,且,點(diǎn)為中點(diǎn).
(1)證明:平面平面;
(2)直線和平面所成的角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】
在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)),曲線的極坐標(biāo)方程為.
(1)寫出直線的普通方程和曲線的直角坐標(biāo)方程;
(2)若點(diǎn)的坐標(biāo)為,直線與曲線交于,兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,右準(zhǔn)線為.點(diǎn)是橢圓上異于長軸端點(diǎn)的任意一點(diǎn),連接并延長交橢圓于點(diǎn),線段的中點(diǎn)為,為坐標(biāo)原點(diǎn),且直線與右準(zhǔn)線交于點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若,求點(diǎn)的坐標(biāo);
(3)試確定直線與橢圓的公共點(diǎn)的個數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)中,直線的參數(shù)方程為為參數(shù),.在以坐標(biāo)原點(diǎn)為極點(diǎn)、x軸的非負(fù)半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.
(1)若點(diǎn)在直線上,求直線的極坐標(biāo)方程;
(2)已知,若點(diǎn)在直線上,點(diǎn)在曲線上,且的最小值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,四點(diǎn),,,中恰有三點(diǎn)在橢圓上,拋物線焦點(diǎn)到準(zhǔn)線的距離為.
(1)求橢圓、拋物線的方程;
(2)過橢圓右頂點(diǎn)Q的直線與拋物線交于點(diǎn)A、B,射線、分別交橢圓于點(diǎn)、.
(i)證明:為定值;
(ii)求的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】哈爾濱市第三中學(xué)校響應(yīng)教育部門疫情期間“停課不停學(xué)”的號召,實(shí)施網(wǎng)絡(luò)授課,為檢驗(yàn)學(xué)生上網(wǎng)課的效果,高三學(xué)年進(jìn)行了一次網(wǎng)絡(luò)模擬考試.全學(xué)年共人,現(xiàn)從中抽取了人的數(shù)學(xué)成績,繪制成頻率分布直方圖(如下圖所示).已知這人中分?jǐn)?shù)段的人數(shù)比分?jǐn)?shù)段的人數(shù)多人.
(1)根據(jù)頻率分布直方圖,求、的值,并估計抽取的名同學(xué)數(shù)學(xué)成績的中位數(shù);
(2)若學(xué)年打算給數(shù)學(xué)成績不低于分的同學(xué)頒發(fā)“網(wǎng)絡(luò)課堂學(xué)習(xí)優(yōu)秀獎”,將這名同學(xué)數(shù)學(xué)成績的樣本頻率視為概率.
(i)估計全學(xué)年的獲獎人數(shù);
(ii)若從全學(xué)年隨機(jī)選取人,求所選人中至少有人獲獎的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為改善環(huán)境,節(jié)約資源,我國自2019年起在全國地級及以上城市全面啟動生活垃圾分類,垃圾分類已成為一種潮流.某市一小區(qū)的主管部門為了解居民對垃圾分類的認(rèn)知是否與其受教育程度有關(guān),對該小區(qū)居民進(jìn)行了隨機(jī)抽樣調(diào)查,得到如下統(tǒng)計數(shù)據(jù)的列聯(lián)表:
知道如何對垃圾進(jìn)行分類 | 不知道如何對垃圾進(jìn)行分類 | 合計 | |
未受過高等教育 | 10 | ||
受過高等教育 | |||
合計 | 50 |
(1)求列聯(lián)表中的,,,,的值,并估計該小區(qū)受過高等教育的居民知道如何對垃圾進(jìn)行分類的概率;
(2)根據(jù)列聯(lián)表判斷能否有的把握認(rèn)為該小區(qū)居民對垃圾分類的認(rèn)知與其受教育程度有關(guān)?
參考數(shù)據(jù)及公式:
,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在銳角△ABC中,a=2,_______,求△ABC的周長l的范圍.
在①(﹣cos,sin),(cos,sin),且,②cosA(2b﹣c)=acosC,③f(x)=cosxcos(x),f(A)
注:這三個條件中任選一個,補(bǔ)充在上面問題中并對其進(jìn)行求解.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com