【題目】已知和是橢圓的兩個(gè)焦點(diǎn),且點(diǎn)在橢圓C上.
(1)求橢圓C的方程;
(2)直線(m>0)與橢圓C有且僅有一個(gè)公共點(diǎn),且與x軸和y軸分別交于點(diǎn)M,N,當(dāng)△OMN面積取最小值時(shí),求此時(shí)直線的方程.
【答案】(1)(2)或.
【解析】
(1)由和是橢圓的兩個(gè)焦點(diǎn),且點(diǎn)在橢圓C上,求出a,b,即可得出橢圓方程;
(2)聯(lián)立直線和橢圓方程可得,由此利用根的判別式、韋達(dá)定理、弦長(zhǎng)公式、基本不等式、橢圓性質(zhì),結(jié)合已知條件即可求出結(jié)果.
(1)∵和是橢圓的兩個(gè)焦點(diǎn),且點(diǎn)在橢圓C上,∴依題意,,又,故.由得b2=3.
故所求橢圓C的方程為.
(2)由,消y得,
由直線l與橢圓C僅有一個(gè)公共點(diǎn)知,
,整理得.
由條件可得,,.
所以.①
將代入①,得.
因?yàn)?/span>,所以,
當(dāng)且僅當(dāng),則,即時(shí)等號(hào)成立,有最小值.
因?yàn)?/span>,所以,又,解得.
故所求直線方程為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若在定義域內(nèi)存在,使得成立,則稱為函數(shù)的局部對(duì)稱點(diǎn).
(1)證明:函數(shù)在區(qū)間內(nèi)必有局部對(duì)稱點(diǎn);
(2)若函數(shù)在R上有局部對(duì)稱點(diǎn),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè):實(shí)數(shù)滿足,:實(shí)數(shù)滿足.
(1)若,且為真,求實(shí)數(shù)的取值范圍;
(2)若,且是的充分不必要條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中, , , 兩兩垂直, ,且, .
(1)求二面角的余弦值;
(2)已知點(diǎn)為線段上異于的點(diǎn),且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年10月18日至10月24日,中國(guó)共產(chǎn)黨第十九次全國(guó)代表大會(huì)簡(jiǎn)稱黨的“十九大”在北京召開一段時(shí)間后,某單位就“十九大”精神的領(lǐng)會(huì)程度隨機(jī)抽取100名員工進(jìn)行問卷調(diào)查,調(diào)查問卷共有20個(gè)問題,每個(gè)問題5分,調(diào)查結(jié)束后,發(fā)現(xiàn)這100名員工的成績(jī)都在內(nèi),按成績(jī)分成5組:第1組,第2組,第3組,第4組,第5組,繪制成如圖所示的頻率分布直方圖,已知甲、乙、丙分別在第3,4,5組,現(xiàn)在用分層抽樣的方法在第3,4,5組共選取6人對(duì)“十九大”精神作深入學(xué)習(xí).
求這100人的平均得分同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表;
求第3,4,5組分別選取的作深入學(xué)習(xí)的人數(shù);
若甲、乙、丙都被選取對(duì)“十九大”精神作深入學(xué)習(xí),之后要從這6人隨機(jī)選取2人再全面考查他們對(duì)“十九大”精神的領(lǐng)會(huì)程度,求甲、乙、丙這3人至多有一人被選取的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線x2=4y.
(1)求拋物線在點(diǎn)P(2,1)處的切線方程;
(2)若不過原點(diǎn)的直線l與拋物線交于A,B兩點(diǎn)(如圖所示),且OA⊥OB,|OA|=|OB|,求直線l的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面為矩形,平面,,為的中點(diǎn),是線段上的一動(dòng)點(diǎn).
(1)當(dāng)是線段的中點(diǎn)時(shí),證明:平面;
(2)當(dāng)求二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】4月16日摩拜單車進(jìn)駐大連市旅順口區(qū),綠色出行引領(lǐng)時(shí)尚,旅順口區(qū)對(duì)市民進(jìn)行“經(jīng)常使用共享單車與年齡關(guān)系”的調(diào)查統(tǒng)計(jì),若將單車用戶按照年齡分為“年輕人”(20歲~39歲)和“非年輕人”(19歲及以下或者40歲及以上)兩類,抽取一個(gè)容量為200的樣本,將一周內(nèi)使用的次數(shù)為6次或6次以上的稱為“經(jīng)常使用單車用戶”。使用次數(shù)為5次或不足5次的稱為“不常使用單車用戶”,已知“經(jīng)常使用單車用戶”有120人,其中是“年輕人”,已知“不常使用單車用戶”中有是“年輕人”.
(1)請(qǐng)你根據(jù)已知的數(shù)據(jù),填寫下列列聯(lián)表:
年輕人 | 非年輕人 | 合計(jì) | |
經(jīng)常使用單車用戶 | |||
不常使用單車用戶 | |||
合計(jì) |
(2)請(qǐng)根據(jù)(1)中的列聯(lián)表,計(jì)算值并判斷能否有的把握認(rèn)為經(jīng)常使用共享單車與年齡有關(guān)?
(附:
當(dāng)時(shí),有的把握說事件與有關(guān);當(dāng)時(shí),有的把握說事件與有關(guān);當(dāng)時(shí),認(rèn)為事件與是無(wú)關(guān)的)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com