【題目】如圖,四棱錐P-ABCD中,底面為菱形,且, .
(Ⅰ)求證: ;
(Ⅱ)若,求二面角的余弦值。
【答案】(1)證明見解析;(2).
【解析】試題(1)取的中點,利用菱形和等邊三角形的三線合一得到線線垂直,進而得到線面垂直和線線垂直;(2)先利用勾股定理和線面垂直的判定定理得到線面垂直,建立空間直角坐標系,利用空間向量進行求解.
試題解析:(Ⅰ)證明:取的中點,連接.
∵,四邊形為菱形,且,
∴和為兩個全等的等邊三角形,
則
∴平面,又平面,
∴;
(Ⅱ)解:在中,由已知得, , ,
則,∴,
即,又,∴平面;
以點E為坐標原點,分別以EA,EB,EP所在直線為x,y,z軸,建立如圖所示空間直角坐標系,
則E(0,0,0),C(-2, ,0),D(-1,0,0),P(0,0, ),
則=(1,0, ),=(-1, ,0),
由題意可設平面的一個法向量為;
設平面的一個法向量為,
由已知得: 令y=1,則,z=-1,
∴;
則,所以 ,
由題意知二面角的平面角為鈍角,
所以二面角的余弦值為
科目:高中數學 來源: 題型:
【題目】某城市的電視發(fā)射搭CD建在市郊的一座小山上,如圖所示,小山高BC為30米,在地平面上有一點A,測得A,C兩點間距離為50米.
(1)如果從點A觀測電視發(fā)射塔的視角∠CAD=,求這座電視發(fā)射塔的高度;
(2)點A在何位置時,角∠CAD最大.(參考數據:)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線與圓C相切,圓心C的坐標為
(1)求圓C的方程;
(2)設直線y=x+m與圓C交于M、N兩點.
①若,求m的取值范圍;
②若OM⊥ON,求m的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2017年“十一”期間,高速公路車輛較多.某調查公司在一服務區(qū)從七座以下小型汽車中按進服務區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進行詢問調查,將他們在某段高速公路的車速()分成六段: , , , , , ,后得到如圖的頻率分布直方圖.
(1)求這40輛小型車輛車速的眾數和中位數的估計值;
(2)若從車速在的車輛中任抽取2輛,求車速在的車輛恰有一輛的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數方程是 (為參數),以原點為極點, 軸正半軸為極軸,建立極坐標系,直線的極坐標方程為.
(Ⅰ)求曲線的普通方程與直線的直角坐標方程;
(Ⅱ)已知直線與曲線交于, 兩點,與軸交于點,求.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】孝感車天地關于某品牌汽車的使用年限(年)和所支出的維修費用(千元)由如表的統(tǒng)計資料:
2 | 3 | 4 | 5 | 6 | |
2.1 | 3.4 | 5.9 | 6.6 | 7.0 |
(1)畫出散點圖并判斷使用年限與所支出的維修費用是否線性相關;如果線性相關,求回歸直線方程;
(2)若使用超過8年,維修費用超過1.5萬元時,車主將處理掉該車,估計第10年年底時,車主是否會處理掉該車?
()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知和是橢圓的兩個焦點,且點在橢圓C上.
(1)求橢圓C的方程;
(2)直線(m>0)與橢圓C有且僅有一個公共點,且與x軸和y軸分別交于點M,N,當△OMN面積取最小值時,求此時直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列的前項和,對任意正整數,總存在正數使得, 恒成立:數列的前項和,且對任意正整數, 恒成立.
(1)求常數的值;
(2)證明數列為等差數列;
(3)若,記 ,是否存在正整數,使得對任意正整數, 恒成立,若存在,求正整數的最小值,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com