【題目】設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)y=(1﹣x)f′(x)的圖象如圖所示,則下列結(jié)論中一定成立的是( )
A.函數(shù)f(x)有極大值f(2)和極小值f(1)
B.函數(shù)f(x)有極大值f(﹣2)和極小值f(1)
C.函數(shù)f(x)有極大值f(2)和極小值f(﹣2)
D.函數(shù)f(x)有極大值f(﹣2)和極小值f(2)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給n個(gè)自上而下相連的正方形著黑色或白色.當(dāng)n≤4時(shí),在所有不同的著色方案中,黑色正方形互不相鄰的著色方案如圖所示,由此推斷,當(dāng)n=6時(shí),至少有兩個(gè)黑色正方形相鄰的著色方案共有( )種.
A.21
B.32
C.43
D.54
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a∈R,函數(shù)f(x)=xln(﹣x)+(a﹣1)x.
(1)若f(x)在x=﹣e處取得極值,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[﹣e2 , ﹣e﹣1]上的最大值g(a).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知y=f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x+x2 .
(1)求x<0時(shí),f(x)的解析式;
(2)問(wèn)是否存在這樣的非負(fù)數(shù)a,b,當(dāng)x∈[a,b]時(shí),f(x)的值域?yàn)閇4a﹣2,6b﹣6]?若存在,求出所有的a,b值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合題。
(1)若cos = , π<x< π,求 的值.
(2)已知函數(shù)f(x)=2 sinxcosx+2cos2x﹣1(x∈R),若f(x0)= ,x0∈[ , ],求cos2x0的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于數(shù)列, , , ,若滿(mǎn)足,則稱(chēng)數(shù)列為“數(shù)列”.
若存在一個(gè)正整數(shù),若數(shù)列中存在連續(xù)的項(xiàng)和該數(shù)列中另一個(gè)連續(xù)的項(xiàng)恰好按次序?qū)?yīng)相等,則稱(chēng)數(shù)列是“階可重復(fù)數(shù)列”,
例如數(shù)列因?yàn)?/span>, , , 與, , , 按次序?qū)?yīng)相等,所以數(shù)列是“階可重復(fù)數(shù)列”.
(I)分別判斷下列數(shù)列, , , , , , , , , .是否是“階可重復(fù)數(shù)列”?如果是,請(qǐng)寫(xiě)出重復(fù)的這項(xiàng);
(II)若項(xiàng)數(shù)為的數(shù)列一定是 “階可重復(fù)數(shù)列”,則的最小值是多少?說(shuō)明理由;
(III)假設(shè)數(shù)列不是“階可重復(fù)數(shù)列”,若在其最后一項(xiàng)后再添加一項(xiàng)或,均可 使新數(shù)列是“階可重復(fù)數(shù)列”,且,求數(shù)列的最后一項(xiàng)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓經(jīng)過(guò)點(diǎn),離心率為, 為坐標(biāo)原點(diǎn).
(I)求橢圓的方程.
(II)若點(diǎn)為橢圓上一動(dòng)點(diǎn),點(diǎn)與點(diǎn)的垂直平分線l交軸于點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面中,△ABC的角C的內(nèi)角平分線CE分△ABC面積所成的比 = .將這個(gè)結(jié)論類(lèi)比到空間:在三棱錐A﹣BCD中,平面DEC平分二面角A﹣CD﹣B且與AB交于E,則類(lèi)比的結(jié)論為 = .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知面積為S的凸四邊形中,四條邊長(zhǎng)分別記為a1 , a2 , a3 , a4 , 點(diǎn)P為四邊形內(nèi)任意一點(diǎn),且點(diǎn)P到四邊的距離分別記為h1 , h2 , h3 , h4 , 若 = = = =k,則h1+2h2+3h3+4h4= 類(lèi)比以上性質(zhì),體積為y的三棱錐的每個(gè)面的面積分別記為Sl , S2 , S3 , S4 , 此三棱錐內(nèi)任一點(diǎn)Q到每個(gè)面的距離分別為H1 , H2 , H3 , H4 , 若 = = = =K,則H1+2H2+3H3+4H4=( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com