【題目】給n個自上而下相連的正方形著黑色或白色.當(dāng)n≤4時,在所有不同的著色方案中,黑色正方形互不相鄰的著色方案如圖所示,由此推斷,當(dāng)n=6時,至少有兩個黑色正方形相鄰的著色方案共有( )種.
A.21
B.32
C.43
D.54

【答案】C
【解析】解:設(shè)n個正方形時黑色正方形互不相鄰的著色方案數(shù)為an , 由圖形知:
a1=2,
a2=3,
a3=5=2+3=a1+a2
a4=8=3+5=a2+a3
由此推斷a5=a3+a4=5+8=13,
a6=a4+a5=8+13=21,
故黑色正方形互不相鄰著色方案共有21種;
由于給6個正方形著黑色或白色,每一個小正方形有2種方法,
所以一共有2×2×2×2×2×2=26=64種方法,
由于黑色正方形互不相鄰著色方案共有21種,
所以至少有兩個黑色正方形相鄰著色方案共有64﹣21=43種著色方案.
故選:C.
【考點精析】本題主要考查了歸納推理的相關(guān)知識點,需要掌握根據(jù)一類事物的部分對象具有某種性質(zhì),退出這類事物的所有對象都具有這種性質(zhì)的推理,叫做歸納推理才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在區(qū)間上有最大值4和最小值1.設(shè).

(1)求的值;

(2)若不等式上有解,求實數(shù)的取值范圍;

(3)若有三個不同的實數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)l,m是兩條不同的直線,α是一個平面,則下列命題正確的是(
A.若l⊥m,mα,則l⊥α
B.若l⊥α,l∥m,則m⊥α
C.若l∥α,mα,則l∥m
D.若l∥α,m∥α,則l∥m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系內(nèi),已知A(1,a),B(﹣5,﹣3),C(4,0);
(1)當(dāng)a∈( ,3)時,求直線AC的傾斜角α的取值范圍;
(2)當(dāng)a=2時,求△ABC的BC邊上的高AH所在直線方程l.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正三角形ABC的邊長為2,D,E,F(xiàn)分別在三邊AB,BC和CA上,且D為AB的中點,,.

(1)當(dāng)時,求的大小;

(2)求的面積S的最小值及使得S取最小值時的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A= . (Ⅰ)求A∩B,(RB)∪A;
(Ⅱ)若CA,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為平行四邊形,PA⊥底面ABCD,M是棱PD的中點,且PA=AB=AC=2,BC=2

(1)求證:CD⊥平面PAC;
(2)如果如果N是棱AB上一點,且直線CN與平面MAB所成角的正弦值為 ,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的一個焦點與拋物線 的焦點F重合,且橢圓短軸的兩個端點與F構(gòu)成正三角形.
(1)求橢圓的方程;
(2)若過點(1,0)的直線l與橢圓交于不同兩點P、Q,試問在x軸上是否存在定點E(m,0),使 恒為定值?若存在,求出E的坐標(biāo)及定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)y=(1﹣x)f′(x)的圖象如圖所示,則下列結(jié)論中一定成立的是(

A.函數(shù)f(x)有極大值f(2)和極小值f(1)
B.函數(shù)f(x)有極大值f(﹣2)和極小值f(1)
C.函數(shù)f(x)有極大值f(2)和極小值f(﹣2)
D.函數(shù)f(x)有極大值f(﹣2)和極小值f(2)

查看答案和解析>>

同步練習(xí)冊答案