【題目】如圖,正三角形ABC的邊長為2,D,E,F(xiàn)分別在三邊AB,BC和CA上,且D為AB的中點(diǎn),,,.

(1)當(dāng)時(shí),求的大;

(2)求的面積S的最小值及使得S取最小值時(shí)的值.

【答案】(1)θ60;(2)當(dāng)θ45時(shí),S取最小值.

【解析】

試題分析:本題主要考查正弦定理、直角三角形中正切的定義、兩角和的正弦公式、倍角公式、三角形面積公式等基礎(chǔ)知識,考查學(xué)生的分析問題解決問題的能力、轉(zhuǎn)化能力、計(jì)算能力.第一問,在中,,,而在中,利用正弦定理,用表示DE,在中,利用正弦定理,用表示DF,代入到式中,再利用兩角和的正弦公式展開,解出,利用特殊角的三角函數(shù)值求角;第二問,將第一問得到的DF和DE代入到三角形面積公式中,利用兩角和的正弦公式和倍角公式化簡表達(dá)式,利用正弦函數(shù)的有界性確定S的最小值.

BDE中,由正弦定理得,

ADF中,由正弦定理得 4分

tanDEF=,得,整理得,

所以θ60 6分

(2)SDE·DF=

10分

當(dāng)θ45時(shí),S取最小值 12分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,其中 =(2cosx, sin2x), =(cosx,1),x∈R
(1)求函數(shù)y=f(x)的最小正周期和單調(diào)遞增區(qū)間:
(2)在△ABC中,角A,B,C所對的邊分別為a,b,c,f(A)=2,a= 且sinB=2sinC,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+)(A>0,ω>0,||<π),在同一周期內(nèi),當(dāng) 時(shí),f(x)取得最大值3;當(dāng) 時(shí),f(x)取得最小值﹣3.
(1)求函數(shù)f(x)的解析式和圖象的對稱中心;
(2)若 時(shí),關(guān)于x的方程2f(x)+1﹣m=0有且僅有一個實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若離散型隨機(jī)變量X的分布列如圖,則常數(shù)c的值為(

X

0

1

P

9c2﹣c

3﹣8c


A.
B.
C.
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)甲、乙兩人每次射擊命中目標(biāo)的概率分別為 ,且各次射擊相互獨(dú)立,若按甲、乙、甲、乙…的次序輪流射擊,直到有一人擊中目標(biāo)就停止射擊,則停止射擊時(shí),甲射擊了兩次的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給n個自上而下相連的正方形著黑色或白色.當(dāng)n≤4時(shí),在所有不同的著色方案中,黑色正方形互不相鄰的著色方案如圖所示,由此推斷,當(dāng)n=6時(shí),至少有兩個黑色正方形相鄰的著色方案共有( )種.
A.21
B.32
C.43
D.54

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題中

非零向量滿足,則的夾角為;

0的夾角為銳角的充要條件;

必定是直角三角形;

④△ABC的外接圓的圓心為O,半徑為1,若,,則向量在向量方向上的投影為.

以上命題正確的是 __________ (注:把你認(rèn)為正確的命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 與向量 的夾角為θ,且| |=1,| |=
(1)若 ,求
(2)若 垂直,求θ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】綜合題。
(1)若cos = , π<x< π,求 的值.
(2)已知函數(shù)f(x)=2 sinxcosx+2cos2x﹣1(x∈R),若f(x0)= ,x0∈[ , ],求cos2x0的值.

查看答案和解析>>

同步練習(xí)冊答案