【題目】若離散型隨機(jī)變量X的分布列如圖,則常數(shù)c的值為( )
X | 0 | 1 |
P | 9c2﹣c | 3﹣8c |
A. 或
B.
C.
D.1
【答案】C
【解析】解:由隨機(jī)變量的分布列知, 9c2﹣c≥0,3﹣8c≥0,
9c2﹣c+3﹣8c=1,
∴c= .
故選C
【考點(diǎn)精析】通過(guò)靈活運(yùn)用離散型隨機(jī)變量及其分布列,掌握在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱(chēng)表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱(chēng)分布列即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知[x)表示大于x的最小整數(shù),例如[3)=4,[﹣1,3)=﹣1,下列命題中正確的是( ) ①函數(shù)f(x)=[x)﹣x的值域是(0,1]
②若{an}是等差數(shù)列,則{[an)}也是等差數(shù)列
③若{an}是等比數(shù)列,則{[an)}也是等比數(shù)列
④若x∈(1,2017),則方程[x)﹣x=sin x有1007個(gè)根.
A.②
B.③④
C.①
D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin( ﹣x)sinx﹣ cos2x. (I)求f(x)的最小正周期和最大值;
(II)討論f(x)在[ , ]上的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)l,m是兩條不同的直線,α是一個(gè)平面,則下列命題正確的是( )
A.若l⊥m,mα,則l⊥α
B.若l⊥α,l∥m,則m⊥α
C.若l∥α,mα,則l∥m
D.若l∥α,m∥α,則l∥m
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=f(x),若在定義域內(nèi)存在x0 , 使得f(﹣x0)=﹣f(x0)成立,則稱(chēng)x0為函數(shù)f(x)的局部對(duì)稱(chēng)點(diǎn).
(1)若a∈R,a≠0,證明:函數(shù)f(x)=ax2+x﹣a必有局部對(duì)稱(chēng)點(diǎn);
(2)若函數(shù)f(x)=2x+b在區(qū)間[﹣1,1]內(nèi)有局部對(duì)稱(chēng)點(diǎn),求實(shí)數(shù)b的取值范圍;
(3)若函數(shù)f(x)=4x﹣m2x+1+m2﹣3在R上有局部對(duì)稱(chēng)點(diǎn),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系內(nèi),已知A(1,a),B(﹣5,﹣3),C(4,0);
(1)當(dāng)a∈( ,3)時(shí),求直線AC的傾斜角α的取值范圍;
(2)當(dāng)a=2時(shí),求△ABC的BC邊上的高AH所在直線方程l.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正三角形ABC的邊長(zhǎng)為2,D,E,F(xiàn)分別在三邊AB,BC和CA上,且D為AB的中點(diǎn),,,.
(1)當(dāng)時(shí),求的大;
(2)求的面積S的最小值及使得S取最小值時(shí)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為平行四邊形,PA⊥底面ABCD,M是棱PD的中點(diǎn),且PA=AB=AC=2,BC=2 .
(1)求證:CD⊥平面PAC;
(2)如果如果N是棱AB上一點(diǎn),且直線CN與平面MAB所成角的正弦值為 ,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=4cosxsin(x+ )﹣1, (Ⅰ)求f(x)的單調(diào)遞增區(qū)間
(Ⅱ)若sin2x+af(x+ )+1>6cos4x對(duì)任意x∈(﹣ , )恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com