【題目】某商場為一種躍進商品進行合理定價,將該商品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):

單位(元)

8

8.2

8.4

8.6

8.8

9

銷量(件)

90

84

83

80

75

68

(1)按照上述數(shù)據(jù),求四歸直線方程,其中,

(2)預(yù)計在今后的銷售中,銷量與單位仍然服從(Ⅰ)中的關(guān)系,若該商品的成本是每件7.5元,為使商場獲得最大利潤,該商品的單價應(yīng)定為多少元?(利潤=銷售收入﹣成本)

【答案】(1);(2)單價定為10元時,商場可獲得最大利潤.

【解析】

(1)計算平均數(shù),利用即可求得回歸直線方程;

(2)設(shè)工廠獲得的利潤為元,利用利潤=銷售收入-成本,建立函數(shù),利用配方法可求工廠獲得的利潤最大.

(1)由于,

.

所以,

從而回歸直線方程為.

(2)設(shè)商場獲得的利潤為元,依題意得

.

當且僅當時,取得最大值.

故當單價定為10元時,商場可獲得最大利潤.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}為等差數(shù)列,數(shù)列{bn}為等比數(shù)列.若a1<a2 , b1<b2 , 且bi=ai2(i=1,2,3),則數(shù)列{bn}的公比為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C1的極坐標方程為ρ2cos2θ=18,曲線C2的極坐標方程為θ= ,曲線C1 , C2相交于A,B兩點.
(1)求A,B兩點的極坐標;
(2)曲線C1與直線 (t為參數(shù))分別相交于M,N兩點,求線段MN的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,已知圓的半徑為2,圓心在軸的正半軸上,且與直線相切.

(1)求圓的方程。

(2)在圓上,是否存在點,使得直線與圓相交于不同的兩點,且△的面積最大?若存在,求出點的坐標及對應(yīng)的△的面積;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 , ,函數(shù)
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)已知a,b,c分別為△ABC內(nèi)角A,B,C的對邊,其中A為銳角, ,c=1,且f(A)=1,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個命題中:①“等邊三角形的三個內(nèi)角均為60°”的逆命題;

②“若,則方程有實根”的逆否命題;

③“全等三角形的面積相等”的否命題;

④“若,則”的否命題.

其中真命題的個數(shù)是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某動物園要為剛?cè)雸@的小動物建造一間兩面靠墻的三角形露天活動室,地面形狀如圖所示,已知已有兩面墻的夾角為 (∠ACB= ),墻AB的長度為6米,(已有兩面墻的可利用長度足夠大),記∠ABC=θ
(1)若θ= ,求△ABC的周長(結(jié)果精確到0.01米);
(2)為了使小動物能健康成長,要求所建的三角形露天活動室面積△ABC的面積盡可能大,問當θ為何值時,該活動室面積最大?并求出最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,求函數(shù)處的切線方程

(2)若函數(shù)上為增函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知x1 , x2是函數(shù)f(x)=2sin2x+cos2x﹣m在[0, ]內(nèi)的兩個零點,則sin(x1+x2)=

查看答案和解析>>

同步練習(xí)冊答案