【題目】如圖,側(cè)棱與底面垂直的四棱柱的底面是平行四邊形,,.
(1)求證:∥平面;
(2)若,,,求與平面所成角的大。
【答案】(1)見(jiàn)解析(2)90°.
【解析】
(1)取的中點(diǎn),連接、.設(shè),連接.可證明,從而可證得線面平行;
(2)由余弦定理求得,從而由勾股定理逆定理得.然后以為坐標(biāo)原點(diǎn),以,,所在方向分別為軸,軸,軸的正方向,建立空間直角坐標(biāo)系,用空間向量法求得線面角.
(1)取的中點(diǎn),連接、.設(shè),連接.
由題意,是線段的中點(diǎn),是線段的中點(diǎn),
所以是的中位線,
所以.
由題意,,,,
所以,又,所以四邊形是平行四邊形.
所以.
又,所以.
又平面,平面,
所以平面.
(2)在中,,,
由余弦定理,得.
可見(jiàn),所以.
以為坐標(biāo)原點(diǎn),以,,所在方向分別為軸,軸,軸的正方向,建立空間直角坐標(biāo)系,
則,,,.
所以,,.
設(shè)為平面的法向量,則即
令,則.
可見(jiàn),就是平面的一個(gè)法向量,所以與平面所成的角為90°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)拋物線的焦點(diǎn)為,直線與拋物線交于兩點(diǎn).
(1)若過(guò)點(diǎn),且,求的斜率;
(2)若,且的斜率為,當(dāng)時(shí),求在軸上的截距的取值范圍(用表示),并證明的平分線始終與軸平行.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中m為常數(shù),且是函數(shù)的極值點(diǎn).
(Ⅰ)求m的值;
(Ⅰ)若在上恒成立,求實(shí)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的首項(xiàng),其前項(xiàng)和為,設(shè).
(1)若,,且數(shù)列是公差為的等差數(shù)列,求;
(2)設(shè)數(shù)列的前項(xiàng)和為,滿足.
①求數(shù)列的通項(xiàng)公式;
②若對(duì),且,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,橢圓的左頂點(diǎn)為,過(guò)點(diǎn)的直線與橢圓交于軸上方一點(diǎn),以為邊作矩形,其中直線過(guò)原點(diǎn).當(dāng)點(diǎn)為橢圓的上頂點(diǎn)時(shí),的面積為,且.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求矩形面積的最大值;
(3)矩形能否為正方形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn)的坐標(biāo)為,點(diǎn)為橢圓上一點(diǎn).
(1)求橢圓的方程;
(2)過(guò)橢圓的右焦點(diǎn)作斜率為的直線交橢圓于,兩點(diǎn),且,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線,過(guò)的直線與拋物線C交于兩點(diǎn),點(diǎn)A在第一象限,拋物線C在兩點(diǎn)處的切線相互垂直.
(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)P為拋物線C上異于的點(diǎn),直線均不與軸平行,且直線AP和BP交拋物線C的準(zhǔn)線分別于兩點(diǎn),.
(i)求直線的斜率;
(ⅱ)求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)滿足,且.
(1)求的解析式;
(2)當(dāng)時(shí),不等式有解,求實(shí)數(shù)的取值范圍;
(3)設(shè),,求的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com