【題目】如圖,在平面直角坐標系中,橢圓的左頂點為,過點的直線與橢圓交于軸上方一點,以為邊作矩形,其中直線過原點.當點為橢圓的上頂點時,的面積為,且.
(1)求橢圓的標準方程;
(2)求矩形面積的最大值;
(3)矩形能否為正方形?請說明理由.
【答案】(1);(2);(3)為正方形,理由見解析.
【解析】
(1)根據(jù)題意得出關(guān)于、的方程組,解出、的值,即可得出橢圓的標準方程;
(2)設(shè)直線的方程為,其中,將直線的方程與橢圓的方程聯(lián)立,求出點的坐標,利用兩點間的距離公式求出,并求出,可得出四邊形的面積關(guān)于的表達式,然后利用基本不等式可求得的最大值;
(3)由四邊形為正方形得出,可得出,構(gòu)造函數(shù),利用零點存在定理來說明函數(shù)在時有零點,進而說明四邊形能成為正方形.
(1)由題意:,解得,,
所以橢圓的標準方程為;
(2)顯然直線的斜率存在,設(shè)為且,則直線的方程為,即,
聯(lián)立得,
解得,,所以,
直線的方程為,即,所以,
所以矩形面積,
所以當且僅當時,矩形面積取最大值為;
(3)若矩形為正方形,則,即,則,
令,
因為,,又的圖象不間斷,
所以有零點,所以存在矩形為正方形.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市的公交公司為了方便市民出行,科學(xué)規(guī)劃車輛投放,在一個人員密集流動地段增設(shè)一個起點站,為了研究車輛發(fā)車間隔時間與乘客等候人數(shù)之間的關(guān)系,經(jīng)過調(diào)查得到如下數(shù)據(jù):
間隔時間(分鐘) | 10 | 11 | 12 | 13 | 14 | 15 |
等侯人數(shù)(人) | 23 | 25 | 26 | 29 | 28 | 31 |
調(diào)查小組先從這6組數(shù)據(jù)中選取4組數(shù)據(jù)求線性回歸方程,再用剩下的2組數(shù)據(jù)進行檢驗.檢驗方法如下:先用求得的線性回歸方程計算間隔時間對應(yīng)的等候人數(shù),再求與實際等候人數(shù)的差,若差值的絕對值不超過1,則稱所求方程是“恰當回歸方程”.
(1)若選取的是后面4組數(shù)據(jù),求關(guān)于的線性回歸方程,并判斷此方程是否是“恰當回歸方程”;
(2)為了使等候的乘客不超過35人,試用(1)中方程估計間隔時間最多可以設(shè)置為多少(精確到整數(shù))分鐘?
附:對于一組數(shù)據(jù),,……,,其回歸直線的斜率和截距的最小二乘估計分別為:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:1(a>b>0)的左右焦點分別為F1,F2,點P是橢圓C上一點,以PF1為直徑的圓E:x2過點F2.
(1)求橢圓C的方程;
(2)過點P且斜率大于0的直線l1與C的另一個交點為A,與直線x=4的交點為B,過點(3,)且與l1垂直的直線l2與直線x=4交于點D,求△ABD面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一塊以點為圓心,半徑為百米的圓形草坪,草坪內(nèi)距離點百米的點有一用于灌溉的水籠頭,現(xiàn)準備過點修一條筆直小路交草坪圓周于兩點,為了方便居民散步,同時修建小路,其中小路的寬度忽略不計.
(1)若要使修建的小路的費用最省,試求小路的最短長度;
(2)若要在區(qū)域內(nèi)(含邊界)規(guī)劃出一塊圓形的場地用于老年人跳廣場舞,試求這塊圓形廣場的最大面積.(結(jié)果保留根號和)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知當,函數(shù),且,若的圖像與的圖像在第二象限有公共點,且在該點處的切線相同,當實數(shù)變化時,實數(shù)的取值范圍是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知m∈{11,13,15,17,19},n∈{2000,2001,…,2019},則mn的個位數(shù)是1的概率為____________ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“綠水青山就是金山銀山”的理念越來越深入人心,據(jù)此,某網(wǎng)站調(diào)查了人們對生態(tài)文明建設(shè)的關(guān)注情況,調(diào)查數(shù)據(jù)表明,參與調(diào)查的人員中關(guān)注生態(tài)文明建設(shè)的約占80%.現(xiàn)從參與調(diào)查的關(guān)注生態(tài)文明建設(shè)的人員中隨機選出200人,并將這200人按年齡(單位:歲)分組:第1組[15,25),第2組[25,35),第3組[35,45),第4組[45,55),第5組[55,65],得到的頻率分布直方圖如圖所示.
(Ⅰ)求這200人的平均年齡(每一組用該組區(qū)間的中點值作為代表)和年齡的中位數(shù)(保留一位小數(shù));
(Ⅱ)現(xiàn)在要從年齡在第1,2組的人員中用分層抽樣的方法抽取5人,再從這5人中隨機抽取3人進行問卷調(diào)查,求抽取的3人中恰有2人的年齡在第2組中的概率;
(Ⅲ)若從所有參與調(diào)查的人(人數(shù)很多)中任意選出3人,設(shè)這3人中關(guān)注生態(tài)文明建設(shè)的人數(shù)為X,求隨機變量X的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點為F,直線l與C交于M,N兩點.
(1)若l過點F,點M,N到直線y=2的距離分別為d1,d2,且,求l的方程;
(2)若點M的坐標為(0,1),直線m過點M交C于另一點N′,當直線l與m的斜率之和為2時,證明:直線NN′過定點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com