【題目】下列命題:①使得成立;②,都有成立,是在區(qū)間D上單調(diào)遞增的充要條件;③只要函數(shù)有零點,我們就可以用二分法求出零點的近似值;④過點作直線,使它與拋物線僅有一個公共點,這樣的直線有2條;正確的個數(shù)是( )
A.B.C.D.
【答案】D
【解析】
對于①,配方法說明恒成立,則①錯誤;對于②,舉反例,即可說明②錯誤;對于③,舉反例,說明③錯誤;對于④,求出滿足題意的直線,共有3條,說明④錯誤,從而得解.
對于①,對恒成立,故①錯誤.
對于②,函數(shù)在上單調(diào)遞增,其導數(shù),,此時不滿足“對,都有成立”,故②錯誤.
對于③,函數(shù)有一個零點,由于恒成立,不存在區(qū)間使得,故無法使用二分法求出零點的近似值,故③錯誤.
對于④,當斜率不存在時,直線方程為:,與拋物線僅有一個公共點,
當斜率存在時,設直線方程為,
當時,直線方程為:,與拋物線只有一個公共點,
當時,聯(lián)立直線與拋物線方程,得,
消元整理得,
由題可知該方程有兩個相等實根,
即,解得,
直線與拋物線只有一個公共點,
綜上所述,與拋物線僅有一個公共點的直線有3條,故④錯誤.
正確的個數(shù)是.
故選:D.
科目:高中數(shù)學 來源: 題型:
【題目】天氣預報說,今后三天每天下雨的概率相同,現(xiàn)用隨機模擬的方法預測三天中有兩天下雨的概率,用骰子點數(shù)來產(chǎn)生隨機數(shù).依據(jù)每天下雨的概率,可規(guī)定投一次骰子出現(xiàn)1點和2點代表下雨;投三次骰子代表三天;產(chǎn)生的三個隨機數(shù)作為一組.得到的10組隨機數(shù)如下:613,265,114,236,561,435,443,251,154,353.則在此次隨機模擬試驗中,每天下雨的概率的近似值是__________,三天中有兩天下雨的概率的近似值為__________
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】團購已成為時下商家和顧客均非常青睞的一種省錢、高校的消費方式,不少商家同時加入多家團購網(wǎng).現(xiàn)恰有三個團購網(wǎng)站在市開展了團購業(yè)務, 市某調(diào)查公司為調(diào)查這三家團購網(wǎng)站在本市的開展情況,從本市已加入了團購網(wǎng)站的商家中隨機地抽取了50家進行調(diào)查,他們加入這三家團購網(wǎng)站的情況如下圖所示.
(1)從所調(diào)查的50家商家中任選兩家,求他們加入團購網(wǎng)站的數(shù)量不相等的概率;
(2)從所調(diào)查的50家商家中任取兩家,用表示這兩家商家參加的團購網(wǎng)站數(shù)量之差的絕對值,求隨機變量的分布列和數(shù)學期望;
(3)將頻率視為概率,現(xiàn)從市隨機抽取3家已加入團購網(wǎng)站的商家,記其中恰好加入了兩個團購網(wǎng)站的商家數(shù)為,試求事件“”的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓的離心率為,其右焦點到點的距離為.
(1)求橢圓的方程;
(2)若直線與橢圓相交于,兩點(,不是左右頂點),且以為直徑的圓過橢圓的右頂點,求證直線過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一旅游區(qū)有兩個新建項目、.項目的一期投資額與利潤近似滿足.項目的一期投資額與利潤的關系如散點圖所示,其中,,.一商家欲向這兩個項目一期隨機投資,其中投資項目不超過10(本題未注明金額單位的,單位均為百萬元).投資、相互獨立.
(1)用最小二乘法求與的回歸直線方程;
(2)商家投資項目的概率是0.4,投資項目的概率是0.6.設商家這次投資獲得的利潤最大值為,利用(1)的結(jié)果,求.
附參考公式:,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】本小題滿分13分)
工作人員需進入核電站完成某項具有高輻射危險的任務,每次只派一個人進去,且每個人只派一次,工作時間不超過10分鐘,如果有一個人10分鐘內(nèi)不能完成任務則撤出,再派下一個人.現(xiàn)在一共只有甲、乙、丙三個人可派,他們各自能完成任務的概率分別,假設互不相等,且假定各人能否完成任務的事件相互獨立.
(1)如果按甲在先,乙次之,丙最后的順序派人,求任務能被完成的概率.若改變?nèi)齻人被派出的先后順序,任務能被完成的概率是否發(fā)生變化?
(2)若按某指定順序派人,這三個人各自能完成任務的概率依次為,其中是的一個排列,求所需派出人員數(shù)目的分布列和均值(數(shù)字期望);
(3)假定,試分析以怎樣的先后順序派出人員,可使所需派出的人員數(shù)目的均值(數(shù)字期望)達到最。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若點為點在平面上的正投影,則記.如圖,在棱長為1的正方體中,記平面為,平面為,點是線段上一動點,.給出下列四個結(jié)論:
①為的重心;
②;
③當時,平面;
④當三棱錐的體積最大時,三棱錐外接球的表面積為.
其中,所有正確結(jié)論的序號是________________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com