【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率為,是橢圓上一點(diǎn),且面積的最大值為1.
(1)求橢圓的方程;
(2)過的直線交橢圓于兩點(diǎn),求的取值范圍;
【答案】(1);(2).
【解析】
(1)設(shè)橢圓的半焦距為c,由題意結(jié)合橢圓的性質(zhì)可得,解方程后即可得解;
(2)按照直線的斜率是否存在分類討論;當(dāng)直線的斜率存在,設(shè)的方程為,,,聯(lián)立方程結(jié)合韋達(dá)定理可得、、,再由平面向量數(shù)量積的坐標(biāo)運(yùn)算可得,即可得解.
(1)設(shè)橢圓的半焦距為c,
由題知,解得,
所以橢圓方程為;
(2)由題意,
①若直線的斜率不存在,則直線的方程為,
不妨設(shè),,此時(shí),,
所以;
②若直線的斜率存在,設(shè)的方程為,,,
則由,消去得,,
所以,,
又,
所以
,
因?yàn)?/span>,所以,所以,
所以;
綜上,的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程是(是參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,其傾斜角為.
(Ⅰ)證明直線恒過定點(diǎn),并寫出直線的參數(shù)方程;
(Ⅱ)在(Ⅰ)的條件下,若直線與曲線交于,兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論在上極值點(diǎn)的個(gè)數(shù);
(2)若是函數(shù)的兩個(gè)極值點(diǎn),且恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】雙曲線的左右焦點(diǎn)分別為,,為坐標(biāo)原點(diǎn).為曲線右支上的點(diǎn),點(diǎn)在外角平分線上,且.若恰為頂角為的等腰三角形,則該雙曲線的離心率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義域?yàn)?/span>的偶函數(shù),且滿足,當(dāng)時(shí),,則函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù)為( )
A.9B.10C.18D.20
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的短軸長(zhǎng)為4,離心率為,斜率不為0的直線與橢圓相交于,兩點(diǎn)(,異于橢圓的頂點(diǎn)),且以為直徑的圓過橢圓的右頂點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)直線是否過定點(diǎn),如果過定點(diǎn),求出該定點(diǎn)的坐標(biāo);如果不過定點(diǎn),請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為緩解高三學(xué)生的高考?jí)毫,?jīng)常舉行一些心理素質(zhì)綜合能力訓(xùn)練活動(dòng),經(jīng)過一段時(shí)間的訓(xùn)練后從該年級(jí)800名學(xué)生中隨機(jī)抽取100名學(xué)生進(jìn)行測(cè)試,并將其成績(jī)分為、、、、五個(gè)等級(jí),統(tǒng)計(jì)數(shù)據(jù)如圖所示(視頻率為概率),根據(jù)圖中抽樣調(diào)查的數(shù)據(jù),回答下列問題:
(1)試估算該校高三年級(jí)學(xué)生獲得成績(jī)?yōu)?/span>的人數(shù);
(2)若等級(jí)、、、、分別對(duì)應(yīng)100分、90分、80分、70分、60分,學(xué)校要求當(dāng)學(xué)生獲得的等級(jí)成績(jī)的平均分大于90分時(shí),高三學(xué)生的考前心理穩(wěn)定,整體過關(guān),請(qǐng)問該校高三年級(jí)目前學(xué)生的考前心理穩(wěn)定情況是否整體過關(guān)?
(3)以每個(gè)學(xué)生的心理都培養(yǎng)成為健康狀態(tài)為目標(biāo),學(xué)校決定對(duì)成績(jī)等級(jí)為的16名學(xué)生(其中男生4人,女生12人)進(jìn)行特殊的一對(duì)一幫扶培訓(xùn),從按分層抽樣抽取的4人中任意抽取2名,求恰好抽到1名男生的概率..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),點(diǎn)P為平面上的動(dòng)點(diǎn),過點(diǎn)P作直線l:的垂線,垂足為Q,且.
Ⅰ求動(dòng)點(diǎn)P的軌跡C的方程;
Ⅱ設(shè)點(diǎn)P的軌跡C與x軸交于點(diǎn)M,點(diǎn)A,B是軌跡C上異于點(diǎn)M的不同的兩點(diǎn),且滿足,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com