【題目】平面內與兩定點,連線的斜率之積等于的點的軌跡,加上、兩點所成的曲線為.若曲線與軸的正半軸的交點為,且曲線上的相異兩點、滿足.
(1)求曲線的軌跡方程;
(2)求面積的最大值.
【答案】(1)(2)
【解析】
(1)首先設出,根據斜率之積等于得到,再化簡即可得到曲線的軌跡方程.
(2)分別討論的斜率存在和不存在時,根據,設出直線方程與橢圓聯(lián)立,利用根系關系得到直線恒過,再將面積轉化為,利用根系關系和對勾函數的單調性即可得到面積的最大值.
(1)設曲線上任意一點,,,
,
整理得:.
又曲線加上,兩點,所以曲線的方程是:.
(2)由題意可知,設,,
當的斜率存在時,設直線:,
聯(lián)立方程組:,得到,
則,.
,,
因為,所以有,
,
,
化簡得到,解得:或(舍).
當的斜率不存在時,
易知滿足條件的直線為:.
因此,直線恒過定點.
所以,
,
因為,所以.
設,.
由對勾函數的單調性得到在為增函數,
所以.
即:(時取到最大值).
所以面積的最大值為.
科目:高中數學 來源: 題型:
【題目】某學生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設計了一個實驗,并獲得了煤氣開關旋鈕旋轉的弧度數與燒開一壺水所用時間的一組數據,且作了一定的數據處理(如表),得到了散點圖(如圖).
1.47 | 20.6 | 0.78 | 2.35 | 0.81 | -19.3 | 16.2 |
表中,.
(1)根據散點圖判斷,與哪一個更適宜作燒開一壺水時間關于開關旋鈕旋轉的弧度數的回歸方程類型?(不必說明理由)
(2)根據判斷結果和表中數據,建立關于的回歸方程;
(3)若旋轉的弧度數與單位時間內煤氣輸出量成正比,那么為多少時燒開一壺水最省煤氣?
附:對于一組數據,…,,其回歸直線的斜率和截距的最小二乘估計分別為,.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的上頂點為A,右焦點為F,O是坐標原點,是等腰直角三角形,且周長為.
(1)求橢圓的方程;
(2)若直線l與AF垂直,且交橢圓于B,C兩點,求面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,圓的參數方程為(為參數),直線的參數方程為(為參數),設原點在圓的內部,直線與圓交于、兩點;以坐標原點為極點,軸的正半軸為極軸建立極坐標系.
(1)求直線和圓的極坐標方程,并求的取值范圍;
(2)求證:為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2020年是我國全面建成小康社會和“十三五”規(guī)劃收官之年,也是佛山在經濟總量超萬億元新起點上開啟發(fā)展新征程的重要歷史節(jié)點.作為制造業(yè)城市,佛山一直堅持把創(chuàng)新擺在制造業(yè)發(fā)展全局的前置位置和核心位置,聚焦打造成為面向全球的國家制造業(yè)創(chuàng)新中心,走“世界科技+佛山智造+全球市場”的創(chuàng)新發(fā)展之路.在推動制造業(yè)高質量發(fā)展的大環(huán)境下,佛山市某工廠統(tǒng)籌各類資源,進行了積極的改革探索.下表是該工廠每月生產的一種核心產品的產量x()(件)與相應的生產總成本y(萬元)的四組對照數據.
x | 5 | 7 | 9 | 11 |
y | 200 | 298 | 431 | 609 |
工廠研究人員建立了y與x的兩種回歸模型,利用計算機算得近似結果如下:
模型①:
模型②:.
其中模型①的殘差(實際值-預報值)圖如圖所示:
(1)根據殘差分析,判斷哪一個模型更適宜作為y關于x的回歸方程?并說明理由;
(2)市場前景風云變幻,研究人員統(tǒng)計歷年的銷售數據得到每件產品的銷售價格q(萬元)是一個與產量x相關的隨機變量,分布列為:
q | |||
P | 0.5 | 0.4 | 0.1 |
結合你對(1)的判斷,當產量x為何值時,月利潤的預報期望值最大?最大值是多少(精確到0.1)?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中心在原點的橢圓E的一個焦點與拋物線的焦點關于直線對稱,且橢圓E與坐標軸的一個交點坐標為.
(1)求橢圓E的標準方程;
(2)過點的直線l(直線的斜率k存在且不為0)交E于A,B兩點,交x軸于點P點A關于x軸的對稱點為D,直線BD交x軸于點Q.試探究是否為定值?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com