【題目】如圖所示的多面體中,底面為正方形,為等邊三角形,平面,,點是線段上除兩端點外的一點.

1)若點為線段的中點,證明:平面;

2)若二面角的余弦值為,試通過計算說明點的位置.

【答案】1)證明見解析(2為線段的中點,詳見解析

【解析】

1)通過證明,即可得證;

2)建立空間直角坐標(biāo)系,利用法向量解決二面角相關(guān)探索問題.

1)因為是等邊三角形,點為線段的中點,

因為,

,故平面

平面,

,

平面.

的中點,以所在直線為軸,過點作平行于的直線為軸,所在直線為軸,建立如圖所示的空間直角坐標(biāo)系,

設(shè),則

設(shè)

,

設(shè)為平面的法向量,

,故

為平面的一個法向量.

可知,為平面的一個法向量,

,

,令

,

解得,經(jīng)檢驗知,

此時點為線段的中點

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐的底面是菱形,,邊的中點,點在線段.

1)證明:平面平面

2)若,平面,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求直線的普通方程和曲線的直角坐標(biāo)方程;

2)若直線與曲線交于、兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖是一塊平行四邊形園地,經(jīng)測量,.擬過線段上一點 設(shè)計一條直路(點在四邊形的邊上,不計直路的寬度),將該園地分為面積之比為的左,右兩部分分別種植不同花卉.設(shè)(單位:m.

1)當(dāng)點與點重合時,試確定點的位置;

2)求關(guān)于的函數(shù)關(guān)系式;

3)試確定點的位置,使直路的長度最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三陵錐中,為等腰直角三角形,,為正三角形,的中點.

1)證明:平面平面;

2)若二面角的平面角為銳角,且棱錐的體積為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某調(diào)查機構(gòu)為了了解某產(chǎn)品年產(chǎn)量x()對價格y(千克/)和利潤z的影響,對近五年該產(chǎn)品的年產(chǎn)量和價格統(tǒng)計如下表:

x

1

2

3

4

5

y

17.0

16.5

15.5

13.8

12.2

1)求y關(guān)于x的線性回歸方程;

2)若每噸該產(chǎn)品的成本為12千元,假設(shè)該產(chǎn)品可全部賣出,預(yù)測當(dāng)年產(chǎn)量為多少時,年利潤w取到最大值?

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且經(jīng)過點.

1)求橢圓的方程;

2)過點的直線與橢圓交于不同兩點、,且滿足條件的點在橢圓上,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代有著輝煌的數(shù)學(xué)研究成果,其中《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》有著豐富多彩的內(nèi)容,是了解我國古代數(shù)學(xué)的重要文獻.5部專著中有3部產(chǎn)生于漢、魏、晉、南北朝時期.現(xiàn)擬從這5部專著中選擇2部作為學(xué)生課外興趣拓展參考書目,則所選2部專著中至少有一部不是漢、魏、晉、南北朝時期專著的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓()的左、右焦點分別是,,點的上頂點,點上,,且.

1)求的方程;

2)已知過原點的直線與橢圓交于,兩點,垂直于的直線且與橢圓交于,兩點,若,求.

查看答案和解析>>

同步練習(xí)冊答案