【題目】已知函數(shù),關(guān)于的不等式只有兩個整數(shù)解,則實數(shù)的取值范圍是

A. B. C. D.

【答案】C

【解析】

函數(shù)f(x)的定義域為(0,+∞),

f′(x)= ,

當(dāng)f′(x)>01ln(2x)>0,ln(2x)<1,

0<2x<e,0<x<,

f′(x)<01ln(2x)<0,ln(2x)>1,

2x>e,x>,

即當(dāng)x=,函數(shù)f(x)取得極大值,同時也是最大值f()==,

即當(dāng)0<x<,f(x)< 有一個整數(shù)解1,

當(dāng)x>,0<f(x)< 有無數(shù)個整數(shù)解,

a=0,+af(x)>0>0,此時有無數(shù)個整數(shù)解,不滿足條件。

a>0,

則由+af(x)>0f(x)>0f(x)<a,

當(dāng)f(x)>0時,不等式由無數(shù)個整數(shù)解,不滿足條件。

當(dāng)a<0,+af(x)>0f(x)>af(x)<0,

當(dāng)f(x)<0時,沒有整數(shù)解,

則要使當(dāng)f(x)>a有兩個整數(shù)解,

f(1)=ln2,f(2)= =ln2,f(3)= ,

∴當(dāng)f(x)ln2,函數(shù)有兩個整數(shù)點1,2,當(dāng)f(x) 時,函數(shù)有3個整數(shù)點1,2,3

∴要使f(x)>a有兩個整數(shù)解,

a<ln2,

ln2<a,

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c.已知 =
(1)求角A的大。
(2)當(dāng)a=6時,求△ABC面積的最大值,并指出面積最大時△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某石化集團(tuán)獲得了某地深海油田區(qū)塊的開采權(quán),集團(tuán)在該地區(qū)隨機(jī)初步勘探了部分幾口井,取得了地質(zhì)資料.進(jìn)入全面勘探時期后,集團(tuán)按網(wǎng)絡(luò)點來布置井位進(jìn)行全面勘探,由于勘探一口井的費(fèi)用很高,如果新設(shè)計的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費(fèi)用,勘探初期數(shù)據(jù)資料見如表:

(參考公式和計算結(jié)果:

, ,

(1)1~6號舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為,求的值,并估計的預(yù)報值.

(2)現(xiàn)準(zhǔn)備勘探新井,若通過1,3,5,7號并計算出的 的值(, 精確到0.01)相比于(1)中的, ,值之差不超過10%,則使用位置最接近的已有舊井,否則在新位置打開,請判斷可否使用舊井?

(3)設(shè)出油量與勘探深度的比值不低于20的勘探井稱為優(yōu)質(zhì)井,那么在原有6口井中任意勘探4口井,求勘探優(yōu)質(zhì)井?dāng)?shù)的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】100名學(xué)生報名參加A、B兩個課外活動小組,報名參加A組的人數(shù)是全體學(xué)生人數(shù)的 ,報名參加B組的人數(shù)比報名參加A組的人數(shù)多3,兩組都沒報名的人數(shù)是同時報名參加A、B兩組人數(shù)的 多1,求同時報名參加A、B兩組人數(shù)(
A.36
B.13
C.24
D.27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的中心在原點,焦點在軸上,離心率等于,它的一個頂點恰好是拋物線的焦點。

(1)求橢圓C的標(biāo)準(zhǔn)方程。

(2)已知點在橢圓C上,點A、B是橢圓C上不同于P、Q的兩個動點,且滿足: 。試問:直線AB的斜率是否為定值?請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,圖象(折線OEFPMN)描述了某汽車在行駛過程中速度與時間的函數(shù)關(guān)系,下列說法中錯誤的是(
A.第3分時汽車的速度是40千米/時
B.第12分時汽車的速度是0千米/時
C.從第3分到第6分,汽車行駛了120千米
D.從第9分到第12分,汽車的速度從60千米/時減少到0千米/時

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= x2﹣mlnx,g(x)=x2﹣(m+1)x,m>0.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)m≥1時,討論函數(shù)f(x)與g(x)圖象的交點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,既是偶函數(shù),又在區(qū)間(0,+∞) 上單調(diào)遞減的函數(shù)是(
A.y=x2
B.y=x1
C.y=x2
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)f(x)=x2|x﹣a|(a∈R).21世紀(jì)教育網(wǎng)
(1)判定f(x)的奇偶性,并說明理由;
(2)當(dāng)a≠0時,是否存在一點M(t,0),使f(x)的圖象關(guān)于點M對稱,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案