【題目】下列函數(shù)中,既是偶函數(shù),又在區(qū)間(0,+∞) 上單調(diào)遞減的函數(shù)是(
A.y=x2
B.y=x1
C.y=x2
D.

【答案】A
【解析】解答:函數(shù)y=x2 , 既是偶函數(shù),在區(qū)間(0,+∞) 上單調(diào)遞減,故A正確;函數(shù)y=x1 , 是奇函數(shù),在區(qū)間(0,+∞) 上單調(diào)遞減,故B錯誤;
函數(shù)y=x2 , 是偶函數(shù),但在區(qū)間(0,+∞) 上單調(diào)遞增,故C錯誤;
函數(shù) ,是奇函數(shù),在區(qū)間(0,+∞) 上單調(diào)遞增,故D錯誤;
故選A
分析:根據(jù)冪函數(shù)奇偶性與單調(diào)性與指數(shù)部分的關(guān)系,我們逐一分析四個答案中冪函數(shù)的性質(zhì),即可得到答案.
【考點精析】認真審題,首先需要了解函數(shù)的奇偶性(偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點對稱).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)

如圖,已知四棱錐的底面為菱形,且, .

I)求證:平面 平面;

II)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),關(guān)于的不等式只有兩個整數(shù)解,則實數(shù)的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)的值域為,若,則實數(shù)的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,△OAB是等腰三角形,∠AOB=120°.以O(shè)為圓心, OA為半徑作圓.

(1)證明:直線AB與⊙O相切;
(2)點C,D在⊙O上,且A,B,C,D四點共圓,證明:AB∥CD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方體ABCD﹣A1B1C1D1棱長為1,P、Q分別是線段AD1和BD上的點,且D1P:PA=DQ:QB=5:12,

(1)求線段PQ的長度;
(2)求證PQ⊥AD;
(3)求證:PQ∥平面CDD1C1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合M是滿足下列條件的函數(shù)f(x)的全體:存在非零常數(shù)T,對任意x∈R,有f(x+T)=Tf(x)成立.給出如下函數(shù):①f(x)=x;②f(x)=2x;③f(x)= ;④f(x)=x2;則屬于集合M的函數(shù)個數(shù)為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左焦點為F1有一小球A 從F1處以速度v開始沿直線運動,經(jīng)橢圓壁反射(無論經(jīng)過幾次反射速度大小始終保持不變,小球半徑忽略不計),若小球第一次回到F1時,它所用的最長時間是最短時間的5倍,則橢圓的離心率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(n)=1+ ,g(n)= ,n∈N*
(1)當n=1,2,3時,試比較f(n)與g(n)的大小關(guān)系;
(2)猜想f(n)與g(n)的大小關(guān)系,并給出證明.

查看答案和解析>>

同步練習冊答案