【題目】為定義域上的單調(diào)函數(shù),且存在區(qū)間(其中,使得當時, 的取值范圍恰為,則稱函數(shù)上的“優(yōu)美函數(shù)”.

函數(shù)是否為“優(yōu)美函數(shù)”?若是,求出的值;若不是,請說明理由.

為“優(yōu)美函數(shù)”,求實數(shù)的取值范圍.

若函數(shù)為“優(yōu)美函數(shù)”,求實數(shù)的取值范圍.

【答案】(1)是“優(yōu)美函數(shù)”,過程見解析

(2)

(3)

【解析】

1)由已知條件中優(yōu)美函數(shù)的定義,說明函數(shù)在區(qū)間的值域是,又由函數(shù)的單調(diào)性,得到關于的方程,解出即可;
2)由題意知,函數(shù)優(yōu)美函數(shù),等價于方程有兩實根,利用判別式和韋達定理列不等式,解不等式可得的范圍;

3)函數(shù)為“優(yōu)美函數(shù)”,可得,消去,可得間的關系,再代入原方程組,可得兩個結(jié)構(gòu)一摸一樣的方程,將方程組的問題化歸為一個二次方程有兩正根的問題,利用判別式和韋達定理列不等式,解不等式可得的范圍.

解:因為函數(shù)在區(qū)間上單調(diào)遞增,且值域為,

,

,

,

所以是“優(yōu)美函數(shù)”,此時,;

因為函數(shù)為遞增函數(shù),

要使在定義域區(qū)間上存在,使得的值域,

則只需有兩個不等的實根,

有兩個不等的實根,設為,

解得;

因為函數(shù)上單調(diào)遞減,

由題意得,兩式相減,

,

可得

將上式代入方程組得,

是方程的兩根,

上有兩個不同的實根,設為,

解得

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為研究冬季晝夜溫差大小對某反季節(jié)大豆新品種發(fā)芽率的影響,某校課外興趣小組記錄了組晝夜溫差與顆種子發(fā)芽數(shù),得到如下資料:

組號

1

2

3

4

5

溫差

10

11

13

12

8

發(fā)芽數(shù)(顆)

23

25

30

26

16

經(jīng)分析,這組數(shù)據(jù)具有較強的線性相關關系,因此該小組確定的研究方案是:先從這五組數(shù)據(jù)中選取組數(shù)據(jù)求出線性回歸方程,再用沒選取的組數(shù)據(jù)進行檢驗.

(1)若選取的是第組的數(shù)據(jù),求出關于的線性回歸方程;

(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過顆,則認為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?

(參考公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在D上的函數(shù)fx),如果滿足對任意x∈D,存在常數(shù)M0,都有|fx|≤M成立,則稱fx)是D上的有界函數(shù),其中M稱為函數(shù)fx)的上界,已知函數(shù)fx=1+x+ax2

1)當a=﹣1時,求函數(shù)fx)在(﹣∞,0)上的值域,判斷函數(shù)fx)在(﹣∞,0)上是否為有界函數(shù),并說明理由;

2)若函數(shù)fx)在x∈[1,4]上是以3為上界的有界函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】德化瓷器是泉州的一張名片,已知瓷器產(chǎn)品的質(zhì)量采用綜合指標值進行衡量,為一等品;為二等品;為三等品.某瓷器廠準備購進新型窯爐以提高生產(chǎn)效益,在某供應商提供的窯爐中任選一個試用,燒制了一批產(chǎn)品并統(tǒng)計相關數(shù)據(jù),得到下面的頻率分布直方圖:

(1)估計該新型窯爐燒制的產(chǎn)品為二等品的概率;

(2)根據(jù)陶瓷廠的記錄,產(chǎn)品各等次的銷售率(某等次產(chǎn)品銷量與其對應產(chǎn)量的比值)及單件售價情況如下:

一等品

二等品

三等品

銷售率

單件售價

根據(jù)以往的銷售方案,未售出的產(chǎn)品統(tǒng)一按原售價的全部處理完.已知該瓷器廠認購該窯爐的前提條件是,該窯爐燒制的產(chǎn)品同時滿足下列兩個條件:

①綜合指標值的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)不小于

②單件平均利潤值不低于元.

若該新型窯爐燒制產(chǎn)品的成本為元/件,月產(chǎn)量為件,在銷售方案不變的情況下,根據(jù)以上圖表數(shù)據(jù),分析該新型窯爐是否達到瓷器廠的認購條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為提高員工的綜合素質(zhì),聘請專業(yè)機構(gòu)對員工進行專業(yè)技術培訓,其中培訓機構(gòu)費用成本為12000元.公司每位員工的培訓費用按以下方式與該機構(gòu)結(jié)算:若公司參加培訓的員工人數(shù)不超過30人時,每人的培訓費用為850元;若公司參加培訓的員工人數(shù)多于30人,則給予優(yōu)惠:每多一人,培訓費減少10元.已知該公司最多有60位員工可參加培訓,設參加培訓的員工人數(shù)為人,每位員工的培訓費為元,培訓機構(gòu)的利潤為元.

(1)寫出 之間的函數(shù)關系式;

(2)當公司參加培訓的員工為多少人時,培訓機構(gòu)可獲得最大利潤?并求最大利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】長方體中,

(1)求直線所成角;

(2)求直線與平面所成角的正弦.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)判斷函數(shù)的奇偶性并說明理由;

2)當時,判斷函數(shù)上的單調(diào)性,并利用單調(diào)性的定義證明;

3)是否存在實數(shù),使得當的定義域為時,值域為?若存在,求出實數(shù)的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,若,,使成立,則實數(shù)的取值范圍是_____.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于在區(qū)間上有意義的函數(shù),滿足對任意的,有恒成立,厄稱上是“友好”的,否則就稱上是“不友好”的,現(xiàn)有函數(shù).

(1)若函數(shù)在區(qū)間)上是“友好”的,求實數(shù)的取值范圍;

(2)若關于的方程的解集中有且只有一個元素,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案