【題目】若為定義域上的單調(diào)函數(shù),且存在區(qū)間(其中,使得當時, 的取值范圍恰為,則稱函數(shù)是上的“優(yōu)美函數(shù)”.
函數(shù)是否為“優(yōu)美函數(shù)”?若是,求出的值;若不是,請說明理由.
若為“優(yōu)美函數(shù)”,求實數(shù)的取值范圍.
若函數(shù)為“優(yōu)美函數(shù)”,求實數(shù)的取值范圍.
【答案】(1)是“優(yōu)美函數(shù)”,過程見解析
(2)
(3)
【解析】
(1)由已知條件中“優(yōu)美函數(shù)”的定義,說明函數(shù)在區(qū)間的值域是,又由函數(shù)的單調(diào)性,得到關于的方程,解出即可;
(2)由題意知,函數(shù)為“優(yōu)美函數(shù)”,等價于方程有兩實根,利用判別式和韋達定理列不等式,解不等式可得的范圍;
(3)函數(shù)為“優(yōu)美函數(shù)”,可得,消去,可得間的關系,再代入原方程組,可得兩個結(jié)構(gòu)一摸一樣的方程,將方程組的問題化歸為一個二次方程有兩正根的問題,利用判別式和韋達定理列不等式,解不等式可得的范圍.
解:因為函數(shù)在區(qū)間上單調(diào)遞增,且值域為,
,
,
,
所以是“優(yōu)美函數(shù)”,此時,;
因為函數(shù)為遞增函數(shù),
要使在定義域區(qū)間上存在,使得的值域,
則只需有兩個不等的實根,
由得在有兩個不等的實根,設為,
,
解得;
因為函數(shù)在上單調(diào)遞減,
由題意得,兩式相減,
得,
可得
將上式代入方程組得,
是方程的兩根,
令在上有兩個不同的實根,設為,
解得.
科目:高中數(shù)學 來源: 題型:
【題目】為研究冬季晝夜溫差大小對某反季節(jié)大豆新品種發(fā)芽率的影響,某校課外興趣小組記錄了組晝夜溫差與顆種子發(fā)芽數(shù),得到如下資料:
組號 | 1 | 2 | 3 | 4 | 5 |
溫差() | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)(顆) | 23 | 25 | 30 | 26 | 16 |
經(jīng)分析,這組數(shù)據(jù)具有較強的線性相關關系,因此該小組確定的研究方案是:先從這五組數(shù)據(jù)中選取組數(shù)據(jù)求出線性回歸方程,再用沒選取的組數(shù)據(jù)進行檢驗.
(1)若選取的是第組的數(shù)據(jù),求出關于的線性回歸方程;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過顆,則認為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?
(參考公式:,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在D上的函數(shù)f(x),如果滿足對任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界,已知函數(shù)f(x)=1+x+ax2
(1)當a=﹣1時,求函數(shù)f(x)在(﹣∞,0)上的值域,判斷函數(shù)f(x)在(﹣∞,0)上是否為有界函數(shù),并說明理由;
(2)若函數(shù)f(x)在x∈[1,4]上是以3為上界的有界函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】德化瓷器是泉州的一張名片,已知瓷器產(chǎn)品的質(zhì)量采用綜合指標值進行衡量,為一等品;為二等品;為三等品.某瓷器廠準備購進新型窯爐以提高生產(chǎn)效益,在某供應商提供的窯爐中任選一個試用,燒制了一批產(chǎn)品并統(tǒng)計相關數(shù)據(jù),得到下面的頻率分布直方圖:
(1)估計該新型窯爐燒制的產(chǎn)品為二等品的概率;
(2)根據(jù)陶瓷廠的記錄,產(chǎn)品各等次的銷售率(某等次產(chǎn)品銷量與其對應產(chǎn)量的比值)及單件售價情況如下:
一等品 | 二等品 | 三等品 | |
銷售率 | |||
單件售價 | 元 | 元 | 元 |
根據(jù)以往的銷售方案,未售出的產(chǎn)品統(tǒng)一按原售價的全部處理完.已知該瓷器廠認購該窯爐的前提條件是,該窯爐燒制的產(chǎn)品同時滿足下列兩個條件:
①綜合指標值的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)不小于;
②單件平均利潤值不低于元.
若該新型窯爐燒制產(chǎn)品的成本為元/件,月產(chǎn)量為件,在銷售方案不變的情況下,根據(jù)以上圖表數(shù)據(jù),分析該新型窯爐是否達到瓷器廠的認購條件.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為提高員工的綜合素質(zhì),聘請專業(yè)機構(gòu)對員工進行專業(yè)技術培訓,其中培訓機構(gòu)費用成本為12000元.公司每位員工的培訓費用按以下方式與該機構(gòu)結(jié)算:若公司參加培訓的員工人數(shù)不超過30人時,每人的培訓費用為850元;若公司參加培訓的員工人數(shù)多于30人,則給予優(yōu)惠:每多一人,培訓費減少10元.已知該公司最多有60位員工可參加培訓,設參加培訓的員工人數(shù)為人,每位員工的培訓費為元,培訓機構(gòu)的利潤為元.
(1)寫出與 之間的函數(shù)關系式;
(2)當公司參加培訓的員工為多少人時,培訓機構(gòu)可獲得最大利潤?并求最大利潤.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(且).
(1)判斷函數(shù)的奇偶性并說明理由;
(2)當時,判斷函數(shù)在上的單調(diào)性,并利用單調(diào)性的定義證明;
(3)是否存在實數(shù),使得當的定義域為時,值域為?若存在,求出實數(shù)的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于在區(qū)間上有意義的函數(shù),滿足對任意的,,有恒成立,厄稱在上是“友好”的,否則就稱在上是“不友好”的,現(xiàn)有函數(shù).
(1)若函數(shù)在區(qū)間()上是“友好”的,求實數(shù)的取值范圍;
(2)若關于的方程的解集中有且只有一個元素,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com