【題目】德化瓷器是泉州的一張名片,已知瓷器產(chǎn)品的質(zhì)量采用綜合指標(biāo)值進(jìn)行衡量,為一等品;為二等品;為三等品.某瓷器廠準(zhǔn)備購(gòu)進(jìn)新型窯爐以提高生產(chǎn)效益,在某供應(yīng)商提供的窯爐中任選一個(gè)試用,燒制了一批產(chǎn)品并統(tǒng)計(jì)相關(guān)數(shù)據(jù),得到下面的頻率分布直方圖:

(1)估計(jì)該新型窯爐燒制的產(chǎn)品為二等品的概率;

(2)根據(jù)陶瓷廠的記錄,產(chǎn)品各等次的銷售率(某等次產(chǎn)品銷量與其對(duì)應(yīng)產(chǎn)量的比值)及單件售價(jià)情況如下:

一等品

二等品

三等品

銷售率

單件售價(jià)

根據(jù)以往的銷售方案,未售出的產(chǎn)品統(tǒng)一按原售價(jià)的全部處理完.已知該瓷器廠認(rèn)購(gòu)該窯爐的前提條件是,該窯爐燒制的產(chǎn)品同時(shí)滿足下列兩個(gè)條件:

①綜合指標(biāo)值的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表)不小于;

②單件平均利潤(rùn)值不低于元.

若該新型窯爐燒制產(chǎn)品的成本為元/件,月產(chǎn)量為件,在銷售方案不變的情況下,根據(jù)以上圖表數(shù)據(jù),分析該新型窯爐是否達(dá)到瓷器廠的認(rèn)購(gòu)條件.

【答案】1.(2該新型窯爐達(dá)到認(rèn)購(gòu)條件.

【解析】試題分析:(1)根據(jù)頻率分布直方圖的意義可得二等品的概率即為中間兩個(gè)條形的面積;(2)將每個(gè)條形的組中值乘以對(duì)應(yīng)的頻率,然后相加求出平均數(shù),計(jì)算出各種產(chǎn)品的利潤(rùn)再求和即可得結(jié)論.

試題解析:1為事件“該新型窯爐燒制的產(chǎn)品為二等品”.

由直方圖可知,該新型窯爐燒制的產(chǎn)品為二等品的頻率為,

故事件的概率估計(jì)值為

2①先分析該窯爐燒制出的產(chǎn)品的綜合指標(biāo)值的平均數(shù):

由直方圖可知,綜合指標(biāo)值的平均數(shù)

該窯爐燒制出的產(chǎn)品的綜合指標(biāo)值的平均數(shù)的估計(jì)值

故滿足認(rèn)購(gòu)條件①.

②再分析該窯爐燒制的單件平均利潤(rùn)值:

由直方圖可知,該新型窯爐燒制的產(chǎn)品為一、二、三等品的概率估計(jì)值分別為,

件產(chǎn)品中,一、二、三等品的件數(shù)估計(jì)值分別為件,件,件.

一等品的銷售總利潤(rùn)為元;

二等品的銷售總利潤(rùn)為元;

三等品的銷售總利潤(rùn)為元.

件產(chǎn)品的單件平均利潤(rùn)值的估計(jì)值為元,

有滿足認(rèn)購(gòu)條件②,綜上所述,該新型窯爐達(dá)到認(rèn)購(gòu)條件.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定圓,動(dòng)圓過(guò)點(diǎn)且與圓相切,記圓心的軌跡為.

1)求軌跡的方程;

2)設(shè)點(diǎn)上運(yùn)動(dòng),關(guān)于原點(diǎn)對(duì)稱,且,當(dāng)的面積最小時(shí), 求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),直線,設(shè)圓的半徑為1, 圓心在.

1)若圓心也在直線上,過(guò)點(diǎn)作圓的切線,求切線方程;

2)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,且過(guò)點(diǎn).

(1)求橢圓的方程;

(2)若直線與橢圓交于兩點(diǎn)(點(diǎn)均在第一象限),且直線的斜率成等比數(shù)列,證明:直線的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果函數(shù)的定義域?yàn)?/span>R,且存在實(shí)常數(shù),使得對(duì)于定義域內(nèi)任意,都有成立,則稱此函數(shù)完美函數(shù).

(1)判斷函數(shù)是否為“完美函數(shù)”.若它是“完美函數(shù)”,求出所有的的取值的集合;若它不是,請(qǐng)說(shuō)明理由.

(2)已知函數(shù)完美函數(shù)”,是偶函數(shù).且當(dāng)0時(shí),.的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象過(guò)點(diǎn)P(1,2),且在處取得極值

(1)求的值;

(2)求函數(shù)的單調(diào)區(qū)間;

(3)求函數(shù)上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為定義域上的單調(diào)函數(shù),且存在區(qū)間(其中,使得當(dāng)時(shí), 的取值范圍恰為,則稱函數(shù)上的“優(yōu)美函數(shù)”.

函數(shù)是否為“優(yōu)美函數(shù)”?若是,求出的值;若不是,請(qǐng)說(shuō)明理由.

為“優(yōu)美函數(shù)”求實(shí)數(shù)的取值范圍.

若函數(shù)為“優(yōu)美函數(shù)”,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2),當(dāng)時(shí),函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某紀(jì)念章從2018年10月1日起開(kāi)始上市,通過(guò)市場(chǎng)調(diào)查,得到該紀(jì)念章每1枚的市場(chǎng)價(jià)(單位:元)與上市時(shí)間(單位:天)的數(shù)據(jù)如下:

上市時(shí)間

4

10

36

市場(chǎng)價(jià)

90

51

90

(1)根據(jù)上表數(shù)據(jù),從下列函數(shù)中選取一個(gè)恰當(dāng)?shù)暮瘮?shù)描述該紀(jì)念章的市場(chǎng)價(jià)與上市時(shí)間的變化關(guān)系并說(shuō)明理由:①;②;③

(2)利用你選取的函數(shù),求該紀(jì)念章市場(chǎng)價(jià)最低時(shí)的上市天數(shù)及最低的價(jià)格.

查看答案和解析>>

同步練習(xí)冊(cè)答案