【題目】已知函數(shù),.
()當(dāng)時(shí),證明:為偶函數(shù);
()若在上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
()若,求實(shí)數(shù)的取值范圍,使在上恒成立.
【答案】()證明見解析;();().
【解析】試題分析:(1)當(dāng)時(shí),的定義域關(guān)于原點(diǎn)對(duì)稱,而,說(shuō)明為偶函數(shù);(2)在上任取、,且,則恒成立,等價(jià)于恒成立,可求得的取值范圍;(3)先證明不等式恒成立,等價(jià)于,即恒成立,利用配方法求得的最大值,即可得結(jié)果.
試題解析:()當(dāng)時(shí),,定義域關(guān)于原點(diǎn)對(duì)稱,
而,說(shuō)明為偶函數(shù).
()在上任取、,且,
則,
因?yàn)?/span>,函數(shù)為增函數(shù),得,,
而在上調(diào)遞增,得,,
于是必須恒成立,
即對(duì)任意的恒成立,
∴.
()由()、()知函數(shù)在上遞減,
在上遞增,其最小值,
且,
設(shè),則,,
于是不等式恒成立,等價(jià)于,
即恒成立,
而,僅當(dāng),
即時(shí)取最大值,故.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四邊形OABP是平行四邊形,過(guò)點(diǎn)P的直線與射線OA,OB分別相交于點(diǎn)M,N,若 , .
(1)把y用x表示出來(lái)(即求y=f(x)的解析式);
(2)設(shè)數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和Sn滿足Sn=f(Sn﹣1)(n≥2且n∈N*),求數(shù)列{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}中公差d≠0,有a1+a4=14,且a1,a2,a7成等比數(shù)列.
(Ⅰ)求{an}的通項(xiàng)公式an與前n項(xiàng)和公式Sn;
(Ⅱ)令bn= (k<0),若{bn}是等差數(shù)列,求數(shù)列{}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有甲,乙兩個(gè)靶,某射手向甲靶射擊一次,命中的概率是 ,向乙靶射擊兩次,每次命中的概率是 ,若該射手每次射擊的結(jié)果相互獨(dú)立,則該射手完成以上三次射擊恰好命中一次的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形為矩形,平面,,平面,且點(diǎn)在上.
()求證:;
()求三棱錐的體積;
()設(shè)點(diǎn)在線段上,且滿足,試在線段上確定一點(diǎn),使得平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D為線段AC的中點(diǎn),E為線段PC上一點(diǎn).
(1)求證:PA⊥BD;
(2)求證:平面BDE⊥平面PAC;
(3)當(dāng)PA∥平面BDE時(shí),求三棱錐E-BCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)甲、乙、丙三個(gè)乒乓球協(xié)會(huì)的運(yùn)動(dòng)員人數(shù)分別為27,9,18,先采用分層抽樣的方法從這三個(gè)協(xié)會(huì)中抽取6名運(yùn)動(dòng)員參加比賽.
(I)求應(yīng)從這三個(gè)協(xié)會(huì)中分別抽取的運(yùn)動(dòng)員人數(shù);
(II)將抽取的6名運(yùn)動(dòng)員進(jìn)行編號(hào),編號(hào)分別為,從這6名運(yùn)動(dòng)員中隨機(jī)抽取2名參加雙打比賽.
(i)用所給編號(hào)列出所有可能的結(jié)果;
(ii)設(shè)A為事件“編號(hào)為的兩名運(yùn)動(dòng)員至少有一人被抽到”,求事件A發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)設(shè)不等式2x-1>m(x2-1)對(duì)滿足|m|≤2的一切實(shí)數(shù)m的取值都成立,求x的取值范圍;
(2)是否存在m使得不等式2x-1>m(x2-1)對(duì)滿足|x|≤2的一切實(shí)數(shù)x的取值都成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量 =(sinx,﹣1), =( cosx,﹣ ),函數(shù)f(x)=( ) ﹣2.
(Ⅰ)求函數(shù)f(x)的最小正周期T;
(Ⅱ)已知a,b,c分別為△ABC內(nèi)角A,B,C的對(duì)邊,其中A為銳角,a=2 ,c=4,且f(A)=1,求A,b和△ABC的面積S.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com