【題目】如圖,在直三棱柱ABCA1B1C1中,DE分別為BC,AC的中點,AB=BC

求證:(1A1B1∥平面DEC1;

2BEC1E

【答案】1)見解析;(2)見解析.

【解析】

(1)由題意結(jié)合幾何體的空間結(jié)構(gòu)特征和線面平行的判定定理即可證得題中的結(jié)論;

(2)由題意首先證得線面垂直,然后結(jié)合線面垂直證明線線垂直即可.

1)因為D,E分別為BC,AC的中點,

所以EDAB.

在直三棱柱ABC-A1B1C1中,ABA1B1,

所以A1B1ED.

又因為ED平面DEC1,A1B1平面DEC1,

所以A1B1∥平面DEC1.

2)因為AB=BC,EAC的中點,所以BEAC.

因為三棱柱ABC-A1B1C1是直棱柱,所以CC1⊥平面ABC.

又因為BE平面ABC,所以CC1BE.

因為C1C平面A1ACC1,AC平面A1ACC1C1CAC=C,

所以BE⊥平面A1ACC1.

因為C1E平面A1ACC1,所以BEC1E.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列,其前項和滿足,其中.

(1)設(shè),證明:數(shù)列是等差數(shù)列;

(2)設(shè),為數(shù)列的前項和,求證:;

(3)設(shè)為非零整數(shù),),試確定的值,使得對任意,都有成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【選修4-4:坐標系與參數(shù)方程】

在平面直角坐標系中,曲線的參數(shù)方程為: 為參數(shù), ),將曲線經(jīng)過伸縮變換: 得到曲線.

(1)以原點為極點, 軸的正半軸為極軸建立坐標系,求的極坐標方程;

(2)若直線為參數(shù))與相交于兩點,且,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),若函數(shù)有兩個零點,.

(1)求實數(shù)的取值范圍;

(2)求證:當時,;

(3)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】正三棱柱(底面是正三角形,側(cè)棱垂直底面)的各條棱長均相等,的中點.、分別是、上的動點(含端點),且滿足.當運動時,下列結(jié)論中正確的是______ (填上所有正確命題的序號).

①平面平面;

②三棱錐的體積為定值;

可能為直角三角形;

④平面與平面所成的銳二面角范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)有兩個零點.

1)若函數(shù)的兩個零點是,求的值,并寫出不等式的解集;

2)當時,函數(shù)有兩個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)a為實數(shù),函數(shù)f(x)x2|xa|1,x∈R.

(1)討論f(x)的奇偶性;

(2)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學校某研究性學習小組在對學生上課注意力集中情況的調(diào)查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數(shù)與聽課時間(單位:分鐘)之間的關(guān)系滿足如圖所示的圖象,當 時,圖象是二次函數(shù)圖象的一部分,其中頂點,過點;當 時,圖象是線段BC,其中.根據(jù)專家研究,當注意力指數(shù)大于62時,學習效果最佳.要使得學生學習效果最佳,則教師安排核心內(nèi)容的時間段為____________.(寫成區(qū)間形式)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知的三邊長分別為,,,MAB邊上的點,P是平面ABC外一點.給出下列四個命題:①若平面ABC,則三棱錐的四個面都是直角三角形;②若平面ABC,且M是邊AB的中點,則有;③若,平面ABC,則面積的最小值為;④若,P在平面ABC上的射影是內(nèi)切圓的圓心,則點P到平面ABC的距離為.其中正確命題的序號是________.(把你認為正確命題的序號都填上)

查看答案和解析>>

同步練習冊答案