【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,圓的方程為,直線的極坐標(biāo)方程為.

(I )寫(xiě)出的極坐標(biāo)方程和的平面直角坐標(biāo)方程;

(Ⅱ) 若直線的極坐標(biāo)方程為,設(shè)的交點(diǎn)為的交點(diǎn)為的面積.

【答案】(Ⅰ)圓的極坐標(biāo)方程為, 的平面直角坐標(biāo)方程為

(Ⅱ).

【解析】試題分析:(根據(jù), ,即可得到的極坐標(biāo)方程和的平面直角坐標(biāo)方程;(分別將代入的極坐標(biāo)方程 即可求出的面積.

試題解析:()直角坐標(biāo)與極坐標(biāo)互化公式為, ,

∵圓的普通方程為,

∴把代入方程得,

的極坐標(biāo)方程為 的平面直角坐標(biāo)方程為;

)分別將代入的極坐標(biāo)方程得; , .

的面積為

的面積為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某理財(cái)公司有兩種理財(cái)產(chǎn)品AB,這兩種理財(cái)產(chǎn)品一年后盈虧的情況如下(每種理財(cái)產(chǎn)品的不同投資結(jié)果之間相互獨(dú)立):

產(chǎn)品A

投資結(jié)果

獲利40%

不賠不賺

虧損20%

概率

產(chǎn)品B

投資結(jié)果

獲利20%

不賠不賺

虧損10%

概率

p

q

注:p>0,q>0

(1)已知甲、乙兩人分別選擇了產(chǎn)品A和產(chǎn)品B投資,如果一年后他們中至少有一人獲利的概率大于,求實(shí)數(shù)p的取值范圍;

(2)若丙要將家中閑置的10萬(wàn)元人民幣進(jìn)行投資,以一年后投資收益的期望值為決策依據(jù),則選用哪種產(chǎn)品投資較理想?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)產(chǎn)品從51日起開(kāi)始上市,通過(guò)市場(chǎng)調(diào)查,得到該農(nóng)產(chǎn)品種植成本Q(單位:元/)與上市時(shí)間t(單位:天)的數(shù)據(jù)如下表:

t

50

110

250

Q

150

108

150

1)根據(jù)上表數(shù)據(jù),從下列函數(shù)中選取一個(gè)函數(shù)描述該農(nóng)產(chǎn)品種植成本Q與上市時(shí)間t的變化關(guān)系,并求出函數(shù)關(guān)系式:,,.

2)利用你選取的函數(shù),求該農(nóng)產(chǎn)品種植成本最低時(shí)的上市時(shí)間及最低種植成本.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商品促銷(xiāo)活動(dòng)設(shè)計(jì)了一個(gè)摸獎(jiǎng)游戲:在一個(gè)口袋中裝有4個(gè)紅球和6個(gè)白球,這些球除顏色外完全相同,顧客一次從中摸出3個(gè)球,若3個(gè)都是白球則無(wú)獎(jiǎng)勵(lì),若有1個(gè)紅球則獎(jiǎng)勵(lì)10元購(gòu)物券,若有2個(gè)紅球則獎(jiǎng)勵(lì)20元購(gòu)物券,若3個(gè)都是紅球則獎(jiǎng)勵(lì)30元購(gòu)物券.

(Ⅰ)求中獎(jiǎng)的概率;

(Ⅱ)求顧客摸獎(jiǎng)一次獲得購(gòu)物券獎(jiǎng)勵(lì)的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在①;這兩個(gè)條件中任選-一個(gè),補(bǔ)充在下面問(wèn)題中,然后解答補(bǔ)充完整的題.

中,角的對(duì)邊分別為,已知 ,.

(1);

(2)如圖,為邊上一點(diǎn),,求的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求下列函數(shù)的單調(diào)區(qū)間.

1fx)=3|x|;

2fx)=|x22x3|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)奇函數(shù)上是增函數(shù),且,則不等式的解集為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(原創(chuàng)題)已知點(diǎn)是橢圓和拋物線 的公共焦點(diǎn), 是橢圓的長(zhǎng)軸的兩個(gè)端點(diǎn),點(diǎn) 在第二象限的交點(diǎn),且.

(I) 求橢圓 的方程;

(II) 點(diǎn)為直線上的動(dòng)點(diǎn),過(guò)點(diǎn)作拋物線的兩條切線,切點(diǎn)分別為.直線交橢圓 兩點(diǎn),設(shè)△的面積為的面積為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】命題p:實(shí)數(shù)x滿(mǎn)足,命題:實(shí)數(shù)x滿(mǎn)足

(1)若,且為真,求實(shí)數(shù)的取值范圍;

(2)若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案