【題目】已知二次函數(shù)在區(qū)間 上有最大值,最小值.

(1)求函數(shù)的解析式;

(2)設(shè).時(shí)恒成立,求的取值范圍.

【答案】(1)(2)

【解析】

試題分析:(1)結(jié)合二次函數(shù)對(duì)稱軸,單調(diào)性由函數(shù)的最大值最小值可得到關(guān)于m,n的方程,求解方程得到m,n的值,從而得到函數(shù)解析式;(2)首選整理函數(shù)式,將恒成立不等式采用分離參數(shù)法變形為,從而通過(guò)求解函數(shù)最值得到k的取值范圍

試題解析:(1),

函數(shù)的圖象的對(duì)稱軸方程為.

依題意得 ,即,解得

.---------5

(2),.

時(shí)恒成立,即時(shí)恒成立,

時(shí)恒成立,

只需 .

,由

設(shè)

,

函數(shù)的圖象的對(duì)稱軸方程為.

當(dāng)時(shí),取得最大值.

的取值范圍為.---------12

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一塊矩形空地,要在這塊空地上開辟一個(gè)內(nèi)接四邊形為綠地,使其四個(gè)頂點(diǎn)分別落在矩形的四條邊上,已知AB=a(a>2),BC=2,且AE=AH=CF=CG,設(shè)AE=x,綠地面積為y.

(1)寫出y關(guān)于x的函數(shù)關(guān)系式,并指出這個(gè)函數(shù)的定義域;

(2)當(dāng)AE為何值時(shí),綠地面積y最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩同學(xué)在高考前各做了5次立定跳遠(yuǎn)測(cè)試,測(cè)得甲的成績(jī)?nèi)缦?/span>(單位:米)2.20,2.30,2.30,2.402.30,若甲、乙兩人的平均成績(jī)相同,乙的成績(jī)的方差是0.005,那么甲、乙兩人成績(jī)較穩(wěn)定的是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知圓心坐標(biāo)為的圓軸及直線分別相切于、兩點(diǎn),另一圓與圓外切,且與軸及直線分別相切于兩點(diǎn)

1求圓和圓的方程;

2過(guò)點(diǎn)作直線的平行線,求直線被圓截得的弦的長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

1)試證明函數(shù)是偶函數(shù);

2)畫出的圖象;(要求先用鉛筆畫出草圖,再用黑色簽字筆描摹,否則不給分)

3)請(qǐng)根據(jù)圖象指出函數(shù)的單調(diào)遞增區(qū)間與單調(diào)遞減區(qū)間;(不必證明)

4)當(dāng)實(shí)數(shù)取不同的值時(shí),討論關(guān)于的方程的實(shí)根的個(gè)數(shù);(不必求出方程的解)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等差數(shù)列{an}中,a3=1,公差d=2,則a8的值為(  )

A. 9 B. 10 C. 11 D. 12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直三棱柱的底面是邊長(zhǎng)為2的正三角形,分別是的中點(diǎn)。

(1)證明:平面平面

(2)若直線與平面所成的角為,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】揚(yáng)州瘦西湖隧道長(zhǎng)米,設(shè)汽車通過(guò)隧道的速度為米/秒.根據(jù)安全和車流的需要,當(dāng)時(shí),相鄰兩車之間的安全距離米;當(dāng)時(shí),相鄰兩車之間的安全距離米(其中是常數(shù)).當(dāng)時(shí),,當(dāng)時(shí),

(1)求的值;

(2)一列汽車組成的車隊(duì)勻速通過(guò)該隧道(第一輛汽車車身長(zhǎng)為米,其余汽車車身長(zhǎng)為米,每輛汽車速度均相同).記從第一輛汽車車頭進(jìn)入隧道,至第汽車車尾離開隧道所用的時(shí)間為秒.

表示為的函數(shù);

要使車隊(duì)通過(guò)隧道時(shí)間不超過(guò)秒,求汽車速度的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校某研究性學(xué)習(xí)小組在對(duì)學(xué)生上課注意力集中情況的調(diào)查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數(shù)與聽(tīng)課時(shí)間(單位:分鐘)之間的關(guān)系滿足如圖所示的圖象,當(dāng)時(shí),圖象是二次函數(shù)圖象的一部分,其中頂點(diǎn),過(guò)點(diǎn);當(dāng)時(shí),圖象是線段,其中.根據(jù)專家研究,當(dāng)注意力指數(shù)大于62時(shí),學(xué)習(xí)效果最佳.

1)試求的函數(shù)關(guān)系式;

2)教師在什么時(shí)段內(nèi)安排內(nèi)核心內(nèi)容,能使得學(xué)生學(xué)習(xí)效果最佳?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案