【題目】已知函數(shù),
(1)試證明函數(shù)是偶函數(shù);
(2)畫出的圖象;(要求先用鉛筆畫出草圖,再用黑色簽字筆描摹,否則不給分)
(3)請根據(jù)圖象指出函數(shù)的單調(diào)遞增區(qū)間與單調(diào)遞減區(qū)間;(不必證明)
(4)當(dāng)實(shí)數(shù)取不同的值時,討論關(guān)于的方程的實(shí)根的個數(shù);(不必求出方程的解)
【答案】(1)詳見解析(2)詳見解析(3)增區(qū)間減區(qū)間(4)①當(dāng)時,方程無實(shí)數(shù)根;②當(dāng)或時,方程有兩個實(shí)數(shù)根;③當(dāng)時,方程有三個實(shí)數(shù)根;④當(dāng)時,方程有四個實(shí)數(shù)根
【解析】
試題分析:(1)根據(jù)函數(shù)的定義域?yàn)镽,關(guān)于原點(diǎn)對稱,且滿足f(-x)=f(x),可得函數(shù) f(x)是偶函數(shù).(2)先去絕對值,然后根據(jù)二次函數(shù)、分段函數(shù)圖象的畫法畫出函數(shù)f(x)的圖象.(3)通過圖象即可求得f(x)的單調(diào)遞增和遞減區(qū)間;(4)通過圖象即可得到k的取值和對應(yīng)的原方程實(shí)根的個數(shù)
試題解析:(1)的定義域?yàn)?/span>,且
故為偶函數(shù);
(2)如圖
(3)遞增區(qū)間有:
遞減區(qū)間有:
(4)根據(jù)圖象可知,
①當(dāng)時,方程無實(shí)數(shù)根;
②當(dāng)或時,方程有兩個實(shí)數(shù)根;
③當(dāng)時,方程有三個實(shí)數(shù)根;
④當(dāng)時,方程有四個實(shí)數(shù)根;
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高一年級學(xué)生身體素質(zhì)體能測試的成績(百分制)分布在內(nèi),同時為了了解學(xué)生愛好數(shù)學(xué)的情況,從中隨機(jī)抽取了名學(xué)生,這名學(xué)生體能測試成績的頻率分布直方圖如圖所示,各分?jǐn)?shù)段的“愛好數(shù)學(xué)”的人數(shù)情況如表所示.
(1)求的值;
(2)用分層抽樣的方法,從體能成績在的“愛好數(shù)學(xué)”學(xué)生中隨機(jī)抽取6人參加某項(xiàng)活動,現(xiàn)從6人中隨機(jī)選取2人擔(dān)任領(lǐng)隊(duì),求兩名領(lǐng)隊(duì)中恰有1人體能成績在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若有一個企業(yè),70%的員工年收入1萬元,25%的員工年收入3萬元,5%的員工年收入11萬元,則該企業(yè)員工的年收入的平均數(shù)是________萬元,中位數(shù)是________萬元,眾數(shù)是________萬元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知直線過點(diǎn),傾斜角,再以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出直線的參數(shù)方程和曲線的直角坐標(biāo)方程;
(2)若直線與曲線分別交于、兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)在區(qū)間 上有最大值,最小值.
(1)求函數(shù)的解析式;
(2)設(shè).若在時恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】類比平面幾何中的命題:“垂直于同一直線的兩條直線平行”,在立體幾何中,可以得到命題“__________”,這個類比命題的真假性是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),.
(1)求的極值;
(2)設(shè)≤,記在上的最大值為,求函數(shù)的最小值;
(3)設(shè)函數(shù)(為常數(shù)),若使≤≤在上恒成立的實(shí)數(shù)有且只有一個,求實(shí)數(shù)和的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面,底面是矩形,,是的中點(diǎn).
(1)求證:平面;
(2)已知點(diǎn)是的中點(diǎn),點(diǎn)是上一點(diǎn),且平面平面.若,求點(diǎn)到平面的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com