【題目】已知函數(shù)y=sin(ωx+ )向右平移 個(gè)單位后,所得的圖象與原函數(shù)圖象關(guān)于x軸對(duì)稱(chēng),則ω的最小正值為( )
A.1
B.2
C.
D.3
【答案】D
【解析】解:函數(shù)y=sin(ωx+ )向右平移 個(gè)單位后得到
y=sin[ω(x﹣ )+ ]=sin(ωx﹣ ω+ )的圖象,
∵所得的圖象與原函數(shù)圖象關(guān)于x軸對(duì)稱(chēng),
∴sin(ωx﹣ ω+ )=﹣sin(ωx+ )=sin(ωx+ +π),
∴﹣ ω+ = +π+2kπ,k∈Z,解得ω=﹣6k﹣3,
∴當(dāng)k=﹣1時(shí),ω取最小正數(shù)3,
故選:D.
【考點(diǎn)精析】掌握函數(shù)y=Asin(ωx+φ)的圖象變換是解答本題的根本,需要知道圖象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線x= 與直線x= 是函數(shù) 的圖象的兩條相鄰的對(duì)稱(chēng)軸.
(1)求ω,φ的值;
(2)若 ,f(α)=﹣ ,求sinα的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】①線性回歸方程對(duì)應(yīng)的直線至少經(jīng)過(guò)其樣本數(shù)據(jù)點(diǎn)中的一個(gè)點(diǎn);
②若兩個(gè)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近于;
③在某項(xiàng)測(cè)量中,測(cè)量結(jié)果服從正態(tài)分布 ,若位于區(qū)域內(nèi)的概率為,則位于區(qū)域內(nèi)的概率為;
④對(duì)分類(lèi)變量與的隨機(jī)變量K2的觀測(cè)值k來(lái)說(shuō),k越小,判斷“與有關(guān)系”的把握越大.其中真命題的序號(hào)為( )
A. ①④ B. ②④ C. ①③ D. ②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正項(xiàng)等比數(shù)列{an}的前n項(xiàng)和為Sn , 且S2=6,S4=30,n∈N* , 數(shù)列{bn}滿(mǎn)足bnbn+1=an , b1=1
(1)求an , bn;
(2)求數(shù)列{bn}的前n項(xiàng)和為T(mén)n .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知坐標(biāo)平面上點(diǎn)與兩個(gè)定點(diǎn), 的距離之比等于5.
(1)求點(diǎn)的軌跡方程,并說(shuō)明軌跡是什么圖形;
(2)記(1)中的軌跡為,過(guò)點(diǎn)的直線被所截得的線段的長(zhǎng)為 8,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中, 平面是BC的中點(diǎn).
求證: ;
求異面直線AE與所成的角的大;
若G為中點(diǎn),求二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(, 為自然對(duì)數(shù)的底數(shù)),且曲線在點(diǎn)處的切線平行于軸.
(1)求的值;
(2)求函數(shù)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|x2﹣2x﹣3≤0,x∈R},B={x|m﹣1≤x≤m+1,x∈R,m∈R}
(1)若A∩B=[1,3],求實(shí)數(shù)m的值;
(2)若ARB,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x(lnx﹣2ax)有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A.(﹣∞, )
B.(0, )
C.(0, )
D.( ,+∞)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com