【題目】已知函數(shù)f(x)=(x﹣2)ex﹣ +kx(k是常數(shù),e是自然對數(shù)的底數(shù),e=2.71828…)在區(qū)間(0,2)內(nèi)存在兩個(gè)極值點(diǎn),則實(shí)數(shù)k的取值范圍是 .
【答案】(1,e)∪(e,e2)
【解析】解:f′(x)=(x﹣1)ex﹣k(x﹣1)=(x﹣1)(ex﹣k), 若f(x)在(0,2)內(nèi)存在兩個(gè)極值點(diǎn),
則f′(x)=0在(0,2)有2個(gè)解,
令f′(x)=0,解得:x=1或k=ex ,
而y=ex(0<x<2)的值域是(1,e2),
故k∈(1,e)∪(e,e2),
所以答案是:(1,e)∪(e,e2).
【考點(diǎn)精析】本題主要考查了函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識點(diǎn),需要掌握求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形 中, ,點(diǎn) 為 的中點(diǎn), 為線段 (端點(diǎn)除外)上一動點(diǎn).現(xiàn)將 沿 折起,使得平面 平面 .設(shè)直線 與平面 所成角為 ,則 的最大值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=cosx的圖象與直線x= ,x= 以及x軸所圍成的圖形的面積為a,則(x﹣ )(2x﹣ )5的展開式中的常數(shù)項(xiàng)為(用數(shù)字作答).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓C: 的右頂點(diǎn)為A,離心率為e,且橢圓C過點(diǎn) ,以AE為直徑的圓恰好經(jīng)過橢圓的右焦點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知動直線l(直線l不過原點(diǎn)且斜率存在)與橢圓C交于P,Q兩個(gè)不同的點(diǎn),且△OPQ的面積S=1,若N為線段PQ的中點(diǎn),問:在x軸上是否存在兩個(gè)定點(diǎn)E1 , E2 , 使得直線NE1與NE2的斜率之積為定值?若存在,求出E1 , E2的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知MOD函數(shù)是一個(gè)求余函數(shù),記MOD(m,n)表示m除以n的余數(shù),例如MOD(8,3)=2.如圖是某個(gè)算法的程序框圖,若輸入m的值為48時(shí),則輸出i的值為( )
A.7
B.8
C.9
D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為實(shí)數(shù),設(shè)函數(shù),設(shè)
.
(1)求的取值范圍,并把表示為的函數(shù);
(2)若恒成立,求實(shí)數(shù)的取值范圍;
(3)若存在使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線 過坐標(biāo)原點(diǎn) ,圓 的方程為 .
(1)當(dāng)直線 的斜率為 時(shí),求 與圓 相交所得的弦長;
(2)設(shè)直線 與圓 交于兩點(diǎn) ,且 為 的中點(diǎn),求直線 的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線 的頂點(diǎn)在原點(diǎn) ,對稱軸是 軸,且過點(diǎn) .
(Ⅰ)求拋物線 的方程;
(Ⅱ)已知斜率為 的直線 交 軸于點(diǎn) ,且與曲線 相切于點(diǎn) ,點(diǎn) 在曲線 上,且直線 軸, 關(guān)于點(diǎn) 的對稱點(diǎn)為 ,判斷點(diǎn) 是否共線,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com