【題目】在△ABC中,6sinA+4cosB=1,且4sinB+6cosA=5 ,則cosC=(
A.
B.±
C.
D.﹣

【答案】C
【解析】解:6sinA+4cosB=1,且4sinB+6cosA=5
∴(6sinA+4cosB)2=1,…①,
(4sinB+6cosA)2=75,…②,
①+②可得:16+36+48(sinAcosB+cosAsinB)=76
∴sin(A+B)= ,
∴sinC=
∴cosC= ,又∠C∈(0,π),
∴∠C的大小為 ,
若∠C= ,得到A+B= ,則cosB> ,所以4cosB>2>1,sinA>0,
∴6sinA+4cosB>2與6sinA+4cosB=1矛盾,所以∠C≠ ,
∴滿足題意的∠C的值為
則cosC=
故選:C.
【考點(diǎn)精析】利用同角三角函數(shù)基本關(guān)系的運(yùn)用對(duì)題目進(jìn)行判斷即可得到答案,需要熟知同角三角函數(shù)的基本關(guān)系:;;(3) 倒數(shù)關(guān)系:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 ,0<β< ,cos( +α)=﹣ ,sin( +β)= ,求sin(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖三棱柱中,側(cè)面為菱形,

(1)證明: ;

(2)若, ,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=a(2cos2 +sinx)+b
(1)若a=﹣1,求f(x)的單調(diào)增區(qū)間;
(2)若x∈[0,π]時(shí),f(x)的值域是[5,8],求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知單調(diào)遞增的等比數(shù)列滿足: ,

(1)求數(shù)列的通項(xiàng)公式;

(2)若,數(shù)列的前項(xiàng)和為 , 成立的正整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的首項(xiàng)a1=3,通項(xiàng)an與前n項(xiàng)和Sn之間滿足2an=SnSn1(n≥2).
(1)求證 是等差數(shù)列,并求公差;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知| |=1,| |=
(1)若 ,求
(2)若 , 的夾角為135°,求| |;
(3)若 垂直,求 的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線,直線(其中)與曲線相交于、兩點(diǎn).

Ⅰ)若,試判斷曲線的形狀.

Ⅱ)若,以線段、為鄰邊作平行四邊形,其中頂點(diǎn)在曲線上, 為坐標(biāo)原點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為的圓形紙板內(nèi)有一個(gè)相同圓心的半徑為的小圓,現(xiàn)將半徑為的一枚硬幣拋到此紙板上,使整塊硬幣完全隨機(jī)落在紙板內(nèi),則硬幣與小圓無公共點(diǎn)的概率為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案