【題目】已知橢圓的離心率為,其中一個焦點在直線上.

(1)求橢圓的方程;

(2)若直線與橢圓交于兩點,試求三角形面積的最大值.

【答案】(1);(2)1.

【解析】

1)根據(jù)直線與軸的交點,求得的值,再利用離心率求得的值,進而求得的值,得到橢圓的方程;

2)將直線方程與橢圓方程聯(lián)立,根據(jù)判別式大于零,得到,利用韋達定理得到兩根和與兩根積,利用弦長公式求得,利用點到直線的距離,求得三角形的高,利用三角形的面積公式,得到關于的式子,利用基本不等式求得最大值.

(1)橢圓的一個焦點即為直線與軸的交點,所以,

又離心率為,,所以橢圓方程為

(2)聯(lián)立若直線與橢圓方程得,令,得設方程的兩根為,

,,

到直線的距離

當且僅當,

時取等號,而滿足,

所以三角形面積的最大值為1.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某池塘里浮萍的面積(單位:)與時間(單位:月)的關系為.關于下列說法正確的是(

A.浮萍每月的增長率為

B.浮萍每月增加的面積都相等

C.個月時,浮萍面積不超過

D.若浮萍蔓延到、所經(jīng)過的時間分別是、,則

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在多面體,底面是梯形,四邊形是正方形,,,..

(1)求證平面平面;

(2)為線段上一點,,試問在線段上是否存在一點,使得平面,若存在,試指出點的位置;若不存在,說明理由?

(3)(2)的條件下求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來,太陽能技術運用的步伐日益加快.2002年全球太陽能電池的年生產(chǎn)量達到670 MW,年生產(chǎn)量的增長率為34%.以后四年中,年生產(chǎn)量的增長率逐年遞增2%(如,2003年的年生產(chǎn)量的增長率為36%.

1)求2006年全球太陽能電池的年生產(chǎn)量(結果精確到0.1 MW);

2)目前太陽能電池產(chǎn)業(yè)存在的主要問題是市場安裝量遠小于生產(chǎn)量,2006年的實際安裝量為1420MW.假設以后若干年內太陽能電池的年生產(chǎn)量的增長率保持在42%,到2010年,要使年安裝量與年生產(chǎn)量基本持平(即年安裝量不少于年生產(chǎn)量的95%),這四年中太陽能電池的年安裝量的平均增長率至少應達到多少(結果精確到0.1%)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了鼓勵節(jié)約用電,遼寧省實行階梯電價制度,其中每戶的用電單價與戶年用電量的關系如下表所示.

分檔

戶年用電量(度)

用電單價(元/度)

第一階梯

0.5

第二階梯

0.55

第三階梯

0.80

記用戶年用電量為度時應繳納的電費為.

1)寫出的解析式;

2)假設居住在沈陽的范偉一家2018年共用電3000度,則范偉一家2018年應繳納電費多少元?

3)居住在大連的張莉一家在2018年共繳納電費1942元,則張莉一家在2018年用了多少度電?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】的三邊,求證:方程有公共根的充要條件是.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】的三邊,求證:方程有公共根的充要條件是.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高科技公司研究開發(fā)了一種新產(chǎn)品,生產(chǎn)這種新產(chǎn)品的每天固定成本為元,每生產(chǎn)件,需另投入成本為元,每件產(chǎn)品售價為元(該新產(chǎn)品在市場上供不應求可全部賣完).

(1)寫出每天利潤關于每天產(chǎn)量的函數(shù)解析式;

(2)當每天產(chǎn)量為多少件時,該公司在這一新產(chǎn)品的生產(chǎn)中每天所獲利潤最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】判斷下列各式的符號:

sin 145°cos(210°);②sincostan 5.

查看答案和解析>>

同步練習冊答案