【題目】對(duì)任意實(shí)數(shù),定義函數(shù),已知函數(shù),,記.

1)若對(duì)于任意實(shí)數(shù),不等式恒成立,求實(shí)數(shù)的取值范圍;

2)若,且,求使得等式成立的的取值范圍;

3)在(2)的條件下,求在區(qū)間上的最小值.

【答案】(1)(2)(3)答案不唯一,具體見解析

【解析】

(1)由題意恒成立,再利用二次函數(shù)恒成立的性質(zhì)求解即可.

(2)由題,再分兩種情況討論即可.

(3)(2)知,,再分段與分參數(shù)的取值范圍情況討論即可.

解:(1)據(jù)題意知,恒成立,

即有對(duì)于任意的恒成立.

,.

2,

,

又由知,,

,

時(shí),.

當(dāng)時(shí),,

,

,.

當(dāng)時(shí),,

,

,,

上式不成立.

綜上①②知,使等式成立的的取值范圍是.

3)由(2)知,

當(dāng)時(shí),,.

當(dāng)時(shí),,

當(dāng)時(shí),又,即時(shí),

;

當(dāng)時(shí),即時(shí),

綜上知,.

時(shí),;

無實(shí)數(shù)解;

時(shí),.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)若函數(shù)的圖像與軸無交點(diǎn),求的取值范圍;

(2)若方程在區(qū)間上存在實(shí)根,求的取值范圍;

(3)設(shè)函數(shù),當(dāng)時(shí)若對(duì)任意的,總存在,使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓經(jīng)過點(diǎn),左、右焦點(diǎn)分別是,點(diǎn)在橢圓上,且滿足點(diǎn)只有兩個(gè).

(Ⅰ)求橢圓的方程;

(Ⅱ)過且不垂直于坐標(biāo)軸的直線交橢圓,兩點(diǎn),在軸上是否存在一點(diǎn),使得的角平分線是軸?若存在求出,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某學(xué)校的特長(zhǎng)班有50名學(xué)生,其中有體育生20名,藝術(shù)生30名,在學(xué)校組織的一次體檢中,該班所有學(xué)生進(jìn)行了心率測(cè)試,心率全部介于50次/分到75次/分之間,現(xiàn)將數(shù)據(jù)分成五組,第一組[50,55),第二組[55,60),…,第五組[70,75],按上述分組方法得到的頻率分布直方圖如圖所示.因?yàn)閷W(xué)習(xí)專業(yè)的原因,體育生常年進(jìn)行系統(tǒng)的身體鍛煉,藝術(shù)生則很少進(jìn)行系統(tǒng)的身體鍛煉,若前兩組的學(xué)生中體育生有8名.

(1)根據(jù)頻率分布直方圖及題設(shè)數(shù)據(jù)完成下列2×2列聯(lián)表.

心率小于60次/分

心率不小于60次/分

合計(jì)

體育生

20

藝術(shù)生

30

合計(jì)50

(2)根據(jù)(1)中表格數(shù)據(jù)計(jì)算可知,________(填“有”或“沒有”)99.5%的把握認(rèn)為“心率小于60次/分與常年進(jìn)行系統(tǒng)的身體鍛煉有關(guān)”.

P(K2k0)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在心理學(xué)研究中,常采用對(duì)比試驗(yàn)的方法評(píng)價(jià)不同心理暗示對(duì)人的影響,具體方法如下:將參加試驗(yàn)的志愿者隨機(jī)分成兩組,一組接受甲種心理暗示,另一組接受乙種心理暗示,通過對(duì)比這兩組志愿者接受心理暗示后的結(jié)果來評(píng)價(jià)兩種心理暗示的作用,現(xiàn)有6名男志愿者A1,A2A3,A4,A5,A6和4名女志愿者B1B2,B3,B4,從中隨機(jī)抽取5人接受甲種心理暗示,另5人接受乙種心理暗示.

(I)求接受甲種心理暗示的志愿者中包含A1但不包含的頻率。

(II)用X表示接受乙種心理暗示的女志愿者人數(shù),求X的分布列與數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在同一直角坐標(biāo)系中,經(jīng)過伸縮變換后,曲線C的方程變?yōu)?/span>.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線/的極坐標(biāo)方程為.

1)求曲線C和直線l的直角坐標(biāo)方程;

2)過點(diǎn)l的垂線l0CA,B兩點(diǎn),點(diǎn)Ax軸上方,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)求在區(qū)間上的極小值和極大值;

(2)求為自然對(duì)數(shù)的底數(shù))上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市A,B兩所中學(xué)的學(xué)生組隊(duì)參加辯論賽,A中學(xué)推薦3名男生,2名女生,B中學(xué)推薦了3名男生,4名女生,兩校推薦的學(xué)生一起參加集訓(xùn),由于集訓(xùn)后隊(duì)員的水平相當(dāng),從參加集訓(xùn)的男生中隨機(jī)抽取3人,女生中隨機(jī)抽取3人組成代表隊(duì)

1求A中學(xué)至少有1名學(xué)生入選代表隊(duì)的概率.

2某場(chǎng)比賽前從代表隊(duì)的6名隊(duì)員中隨機(jī)抽取4人參賽,設(shè)X表示參賽的男生人數(shù),求X得分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)fx)=asinωx+bcosωxω0)的定義域?yàn)?/span>R,最小正周期為π,且對(duì)任意實(shí)數(shù)x,恒有成立.

1)求實(shí)數(shù)ab的值;

2)作出函數(shù)fx)在區(qū)間(0,π)上的大致圖象;

3)若兩相異實(shí)數(shù)x1、x2∈(0,π),且滿足fx1)=fx2),求fx1+x2)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案