【題目】已知函數(shù) ,且 ,f(0)=0
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的值域;
(3)求證:方程f(x)=lnx至少有一根在區(qū)間(1,3).

【答案】
(1)解:由已知可得

解得,a=1,b=﹣1,所以,


(2)解:∵y=f(x)= ,∴分離2x得,2x= ,

由2x>0,解得y∈(﹣1,1),

所以,函數(shù)f(x)的值域?yàn)椋ī?,1)


(3)解:令g(x)=f(x)﹣lnx= ﹣lnx,因?yàn)椋?/span>

g(1)=f(1)﹣ln1= >0,

g(3)=f(3)﹣ln3= ﹣ln3<0,

根據(jù)零點(diǎn)存在定理,函數(shù)g(x)至少有一零點(diǎn)在區(qū)間(1,3),

因此,方程f(x)﹣lnx=0至少有一根在區(qū)間(1,3)上


【解析】(1)根據(jù)f(1)和f(0)列方程,求出a,b;(2)由y= ,分離2x= >0,求得值域;(3)構(gòu)造函數(shù)g(x)=f(x)﹣lnx,運(yùn)用函數(shù)零點(diǎn)存在定理,確定函數(shù)在(1,3)存在零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),設(shè)關(guān)于的方程個(gè)不同的實(shí)數(shù)解,則的所有可能的值為( )

A. 3 B. 1或3 C. 4或6 D. 3或4或6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知異面直線a,b所成角為60度,A為空間一點(diǎn),則過點(diǎn)A與a,b都成60度角的直線有( )條.
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各函數(shù)在其定義域中,既是奇函數(shù),又是增函數(shù)的是(
A.y=x+1
B.y=﹣x3
C.y=﹣
D.y=x|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】首屆世界低碳經(jīng)濟(jì)大會(huì)在南昌召開,本屆大會(huì)以“節(jié)能減排,綠色生態(tài)”為主題.某單位在國家科研部門的支持下,進(jìn)行技術(shù)攻關(guān),采用了新工藝,把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品.已知該單位每月的處理量最少為300噸,最多為600噸,月處理成本y(元)與月處理量x(噸)之間的函數(shù)關(guān)系可近似地表示為 ,且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價(jià)值為200元.
(1)該單位每月處理量為多少噸時(shí),才能使每噸的平均處理成本最低?
(2)該單位每月能否獲利?如果獲利,求出最大利潤;如果不獲利,則需要國家至少補(bǔ)貼多少元才能使該單位不虧損?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,A1 , A2 , B1 , B2為橢圓頂點(diǎn),F(xiàn)2為右焦點(diǎn),延長B1F2與A2B2交于點(diǎn)P,若∠B1PB2為鈍角,則該橢圓離心率的取值范圍是(
A.( ,1)
B.(0,
C.(0,
D.( ,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x| <0,x∈R},B={x|x2﹣2x﹣m<0,x∈R}
(1)當(dāng)m=3時(shí),求A∩(RB);
(2)若A∩B={x|﹣1<x<4},求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐中, , 的中點(diǎn), 的中點(diǎn),且為正三角形.

(1)求證: 平面

(2)若,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)為自然對(duì)數(shù)的底數(shù)),, .

(1)若的極值點(diǎn),且直線分別與函數(shù)的圖象交于,求兩點(diǎn)間的最短距離;

(2)若時(shí),函數(shù)的圖象恒在的圖象上方,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案