【題目】已知是橢圓的左、右焦點(diǎn),橢圓的離心率為,過原點(diǎn)的直線交橢圓于兩點(diǎn),若四邊形的面積最大值為.
(1)求橢圓的方程;
(2)若直線與橢圓交于且,求證:原點(diǎn)到直線的距離為定值.
【答案】(1)(2)見解析
【解析】試題分析:(1)四邊形面積最大值為,所以根據(jù)a,b,c的方程組解出(2)先設(shè),利用直線方程與橢圓方程聯(lián)立方程組,結(jié)合韋達(dá)定理以及,得,再根據(jù)點(diǎn)到直線距離公式可得最后驗(yàn)證斜率不存在的情形.
試題解析:解:(1)由橢圓的離心率為知, , ∴, ∴,
又四邊形面積最大值為, ∴, ∴,
所以橢圓的方程為;
(2)當(dāng)直線的斜率存在時,設(shè),
由得,
所以,
因?yàn)?/span>,所以,即
,
所以,原點(diǎn)到直線的距離;
當(dāng)直線的斜率不存在時,設(shè)直線的方程為,
則,由得,
解得,所以此時原點(diǎn)到直線的距離為.
綜上可知,原點(diǎn)到直線的距離為定值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=x3+ax2+bx+1的導(dǎo)函數(shù)f′(x)滿足f′(x)=2a,f′(2)=﹣b,
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)設(shè)g(x)=f′(x)ex , 求函數(shù)g(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變),再將所得的圖象向左平移個單位長度后得到函數(shù)的圖象.
(Ⅰ)寫出函數(shù)的解析式;
(Ⅱ)若對任意 , 恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)求實(shí)數(shù)和正整數(shù),使得在上恰有個零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知p:關(guān)于x的不等式x2+2ax+4>0對一切 恒成立;q:函數(shù)f(x)=-(5-2a)x在R上是減函數(shù).若“p或q”為真,“p且q”為假,求實(shí)數(shù)a的取值范圍( )。
A.
B.B、
C.C、
D.a≥-2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x|1<x<2},B={x|2a﹣1<x<2a+1}.
(Ⅰ)若AB,求a的取值范圍;
(Ⅱ)若A∩B=,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)關(guān)于x的方程2x2﹣ax﹣2=0的兩根分別為α、β(α<β),函數(shù)
(1)證明f(x)在區(qū)間(α,β)上是增函數(shù);
(2)當(dāng)a為何值時,f(x)在區(qū)間[α,β]上的最大值與最小值之差最。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知下列三個命題:
①若一個球的半徑縮小到原來的 ,則其體積縮小到原來的 ;
②若兩組數(shù)據(jù)的平均數(shù)相等,則它們的標(biāo)準(zhǔn)差也相等;
③直線x+y+1=0與圓x2+y2= 相切.
其中真命題的序號是( )
A.①②③
B.①②
C.①③
D.②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)將100名髙一新生分成水平相同的甲、乙兩個“平行班”,每班50人.陳老師采用A、B兩種不同的教學(xué)方式分別在甲、乙兩個班級進(jìn)行教改實(shí)驗(yàn).為了解教學(xué)效果,期末考試后,陳老師對甲、乙兩個班級的學(xué)生成績進(jìn)行統(tǒng)計分析,畫出頻率分布直方圖(如下圖).記成績不低于90分者為“成績優(yōu)秀”
| 0.05 | 0.01 | 0.001 |
| 3.841 | 6.635 | 10.828 |
(I)從乙班隨機(jī)抽取2名學(xué)生的成績,記“成績優(yōu)秀”的個數(shù)為,求的分布列和數(shù)學(xué)期望;
(II)根據(jù)頻率分布直方圖填寫下面2 x2列聯(lián)表,并判斷是否有95%的把握認(rèn)為:“成績優(yōu)秀”與教學(xué)方式有關(guān).
甲班(A方式) | 乙班(B方式) | 總計 | |
成績優(yōu)秀 | |||
成績不優(yōu)秀 | |||
總計 |
附:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com