已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013028695380.png)
,其中
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013028726192.png)
是自然常數(shù),
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013028742223.png)
(1)討論
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013028773205.png)
時,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013028789226.png)
的單調(diào)性、極值;
(2)是否存在實數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013028804192.png)
,使
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013028789226.png)
的最小值是3,若存在,求出
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013028804192.png)
的值;若不存在,說明理由.
(1)當
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013028851231.png)
時,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013028789226.png)
單調(diào)遞減;當
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013028898232.png)
時,此時
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013028789226.png)
單調(diào)遞增
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013028789226.png)
的極小值為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013028960239.png)
(2)在實數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013028976229.png)
,使得當
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013028991258.png)
時
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013028789226.png)
有最小值3.
試題分析:.解:(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013029023179.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013029054283.png)
,
∴當
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013028851231.png)
時,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013029116264.png)
,此時
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013028789226.png)
單調(diào)遞減
當
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013028898232.png)
時,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013029163268.png)
,此時
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013028789226.png)
單調(diào)遞增
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013028789226.png)
的極小值為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013028960239.png)
(2)假設(shè)存在實數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013028804192.png)
,使
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013029241293.png)
(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013028991258.png)
)有最小值3,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013029272297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013029288239.png)
① 當
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013029319218.png)
時,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013028789226.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013029366229.png)
上單調(diào)遞減,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013029397378.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013029413242.png)
(舍去),所以,此時
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013028789226.png)
無最小值.
②當
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013029709266.png)
時,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013028789226.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013029756248.png)
上單調(diào)遞減,在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013029787246.png)
上單調(diào)遞增
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013029803418.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013028976229.png)
,滿足條件.
③ 當
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013029849243.png)
時,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013028789226.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013029366229.png)
上單調(diào)遞減,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013029397378.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013029413242.png)
(舍去),所以,此時
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013028789226.png)
無最小值.綜上,存在實數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013028976229.png)
,使得當
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013028991258.png)
時
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013028789226.png)
有最小值3.
點評:主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運用,體現(xiàn)了分類討論思想的綜合運用,屬于中檔題。
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:單選題
曲線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013651176587.png)
在P點處的切線平行于直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013651208507.png)
,則此切線方程是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013339062593.png)
.
(1)求函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013339078447.png)
的極值點與極值;
(2)設(shè)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013339093442.png)
為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013339078447.png)
的導(dǎo)函數(shù),若對于任意
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013339124748.png)
,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013339156447.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240133391711054.png)
恒成立,求實數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013339202283.png)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013111907862.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013111938560.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013111954722.png)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013111969429.png)
(1)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013112016473.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013112032414.png)
存在極值,求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013112047283.png)
的取值范圍;
(2)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013112063337.png)
,問是否存在與曲線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013112094562.png)
和
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013112110548.png)
都相切的直線?若存在,判斷有幾條?并求出公切線方程,若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013020318463.png)
是定義在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013020333299.png)
上的函數(shù),若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013020365665.png)
且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013020489495.png)
,則
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013020505612.png)
的解集為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
曲線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012916514595.png)
在點(1,2)處的切線方程是____________
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
設(shè)函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012734318258.png)
在區(qū)間(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012734333218.png)
)的導(dǎo)函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012734365233.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012734365233.png)
在區(qū)間(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012734333218.png)
)的導(dǎo)函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012734427235.png)
,若在區(qū)間(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012734333218.png)
)上
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012734458264.png)
恒成立,則稱函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012734474226.png)
在區(qū)間(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012734333218.png)
)為凸函數(shù),已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012734521469.png)
若當實數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012734536197.png)
滿足
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012734552239.png)
時,函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012734474226.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012734583240.png)
上為凸函數(shù),則
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012734599220.png)
最大值是_________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
設(shè)函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012518816837.png)
,函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012518832548.png)
在(1,g(1))處的切線方程是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012518847564.png)
,則y=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012518863447.png)
在點(1,f(1))處的切線方程為
。
查看答案和解析>>