【題目】下面有兩個關(guān)于“袋子中裝有紅、白兩種顏色的相同小球,從袋中無放回地取球”的游戲規(guī)則,這兩個游戲規(guī)則公平嗎?為什么?
游 戲 1 | 游 戲 2 |
2個紅球和2個白球 | 3個紅球和1個白球 |
取1個球,再取1個球 | 取1個球,再取1個球 |
取出的兩個球同色→甲勝 | 取出的兩個球同色→甲勝 |
取出的兩個球不同色→乙勝 | 取出的兩個球不同色→乙勝 |
【答案】規(guī)則是公平的.
【解析】本試題主要是考查了古典概型概率的求解,利用游戲規(guī)則,我們只需要判定甲勝的概率和乙勝的概率的大小即可。概率不一樣就說明不公平。分別求解游戲1和游戲2中的勝出的概率值,我們可以判斷游戲一不公平,游戲2公平。
解:游戲1:從2個紅球和2個白球中,取1個球,再取1個球,基本事件共有12個.
“取出的兩個球同色”包含的基本事件有4個. ……3分
所以P(甲勝)=,P(乙勝)=1-=.
因此規(guī)則是不公平的. ……5分
游戲2:從3個紅球和1個白球中,取1個球,再取1個球,基本事件共有12個.
“取出的兩個球同色”包含的基本事件有6個. ……8分
所以P(甲勝)=,P(乙勝)=1-=.
因此規(guī)則是公平的. ……10分
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面為梯形, 底面, .過作一個平面使得平面.
(1)求平面將四棱錐分成兩部分幾何體的體積之比;
(2)若平面與平面之間的距離為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,已知 平面,且四邊形為直角梯形, , , ,點, 分別是, 的中點.
(I)求證: 平面;
(Ⅱ)點是線段上的動點,當(dāng)直線與所成角最小時,求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列為等比數(shù)列,,公比為,且,為數(shù)列的前項和.
(1)若,求;
(2)若調(diào)換的順序后能構(gòu)成一個等差數(shù)列,求的所有可能值;
(3)是否存在正常數(shù),使得對任意正整數(shù),不等式總成立?若存在,求出的范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a是從集合{1,2,3,4}中隨機取出的一個數(shù),b是從集合{1,2,3}中隨機取出的一個數(shù),構(gòu)成一個基本事件(a,b)。記“在這些基本事件中,滿足logba≥1為事件A,則A發(fā)生的概率是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知O為坐標(biāo)原點,P為雙曲線 ﹣y2=1(a>0)上一點,過P作兩條漸近線的平行線交點分別為A,B,若平行四邊形OAPB的面積為 ,則雙曲線的離心率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,D為BC上一點,AD=CD,BA=7,BC=8。
(1)若B=60°,求△ABC外接圓的半徑R;
(2)設(shè),若,求△ABC面積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列的前項和為,在同一個坐標(biāo)系中,及的部分圖象如圖所示,則( ).
A. 當(dāng)時,取得最大值 B. 當(dāng)時,取得最大值
C. 當(dāng)時,取得最小值 D. 當(dāng)時,取得最小值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com