【題目】設(shè)a是從集合{1,2,3,4}中隨機(jī)取出的一個數(shù),b是從集合{1,23}中隨機(jī)取出的一個數(shù),構(gòu)成一個基本事件(a,b)。記在這些基本事件中,滿足logba≥1為事件A,則A發(fā)生的概率是 .

【答案】

【解析】

本題是一個古典概型,試驗(yàn)發(fā)生包含的事件是分別從兩個集合中取兩個數(shù)字,共有4×3種結(jié)果,滿足條件的事件是滿足logba1,可以列舉出所有的事件,根據(jù)概率公式得到結(jié)果.

首先將已知的不等關(guān)系轉(zhuǎn)化為a,b的關(guān)系,再求基本事件的個數(shù),最后求概率.試驗(yàn)發(fā)生包含的事件是分別從兩個集合中隨機(jī)取兩個數(shù),共有4×3=12(種)結(jié)果,滿足條件的事件是滿足≥1,可以列舉出所有的事件,當(dāng)b=2時,a=2,3,4,當(dāng)b=3時,a=3,4,共有3+2=5(種),所以根據(jù)古典概型的概率公式得到所求概率是.

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方體ABCD-A1B1C1D中,S是B1D1的中點(diǎn),E、F、G分別是BC、CD和SC的中點(diǎn).求證:

1直線EG平面BDD1B1;

2平面EFG平面BDD1B1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知曲線C的參數(shù)方程為: (φ為參數(shù)),直線l的極坐標(biāo)方程為ρ(cosθ+sinθ)=4.
(1)求曲線C的普通方程和直線l的直角坐標(biāo)方程;
(2)若點(diǎn)P在曲線C上,點(diǎn)Q在直線l上,求線段PQ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在(0,+∞)上的函數(shù)f(x)=a(x+ )﹣|x﹣ |(a∈R).
(1)當(dāng)a= 時,求f(x)的單調(diào)區(qū)間;
(2)若f(x)≥ x對任意的x>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面內(nèi)圓心為的圓的方程為,點(diǎn)是圓上的動點(diǎn),點(diǎn)是平面內(nèi)任意一點(diǎn),若線段的垂直平分線交直線于點(diǎn),則點(diǎn)的軌跡可能是_________.(請將下列符合條件的序號都填入橫線上)

①橢圓;②雙曲線;③拋物線;④圓;⑤直線;⑥一個點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面有兩個關(guān)于“袋子中裝有紅、白兩種顏色的相同小球,從袋中無放回地取球”的游戲規(guī)則,這兩個游戲規(guī)則公平嗎?為什么?

游 戲 1

游 戲 2

2個紅球和2個白球

3個紅球和1個白球

取1個球,再取1個球

取1個球,再取1個球

取出的兩個球同色→甲勝

取出的兩個球同色→甲勝

取出的兩個球不同色→乙勝

取出的兩個球不同色→乙勝

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}中,a1=1,a2=3對任意n∈N* , an+2≤an+32n , an+1≥2an+1都成立,則a2016=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,已知曲線,將曲線上所有點(diǎn)橫坐標(biāo),縱坐標(biāo)分別伸長為原來的倍和倍后,得到曲線

(1)試寫出曲線的參數(shù)方程;

(2)在曲線上求點(diǎn),使得點(diǎn)到直線的距離最大,并求距離最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代數(shù)學(xué)成就的杰出代表作,其中《方田》章給出計(jì)算弧田面積所用的經(jīng)驗(yàn)方式為:弧田面積=(弦×矢+矢2),弧田(如圖)由圓弧和其所對弦所圍成,公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差,現(xiàn)有圓心角為,半徑等于米的弧田,按照上述經(jīng)驗(yàn)公式計(jì)算所得弧田面積約是

A. 平方米 B. 平方米

C. 平方米 D. 平方米

查看答案和解析>>

同步練習(xí)冊答案