【題目】如圖所示,輸出的x的值為

【答案】17
【解析】解:模擬程序的運行,可得 a=51,b=221
不滿足條件a=b,滿足b>a,b=221﹣51=170,
不滿足條件a=b,滿足b>a,b=170﹣51=119,
不滿足條件a=b,滿足b>a,b=119﹣51=68,
不滿足條件a=b,滿足b>a,b=68﹣51=17,
不滿足條件a=b,滿足a>b,a=51﹣17=34,
不滿足條件a=b,滿足a>b,a=34﹣17=17,
滿足條件a=b,x=17,輸出x的值為17.
所以答案是:17.
【考點精析】認真審題,首先需要了解程序框圖(程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應操作的程序框;帶箭頭的流程線;程序框外必要文字說明).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】賭博有陷阱.某種賭博游戲每局的規(guī)則是:參與者現(xiàn)在從標有5、6、7、8、9的相同小球中隨機摸取一個,將小球上的數(shù)字作為其賭金(單位:元);隨后放回該小球,再隨機摸取兩個小球,將兩個小球上數(shù)字之差的絕對值的2倍作為其資金(單位:元).若隨機變量ξ和η分別表示參與者在每一局賭博游戲中的賭金與資金,則Eξ﹣Eη=(元).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在數(shù)列{an}中,a1=1, = + (n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)設bn=1+a (n∈N*),求數(shù)列{2nbn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)對定義域內(nèi)R內(nèi)的任意x都有f(x)=f(4﹣x),且當x≠2時,其導數(shù)f'(x)滿足xf'(x)>2f'(x),若2<a<4,則(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣mex(m∈R,e為自然對數(shù)的底數(shù))
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若f(x)≤e2xx∈R恒成立,求實數(shù)m的取值范圍;
(3)設x1 , x2(x1≠x2)是函數(shù)f(x)的兩個兩點,求證x1+x2>2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,三棱柱ABC﹣A1B1C1中,已知AB⊥側(cè)面BB1C1C,AB=BC=1,BB1=2,∠BCC1=60°.
(Ⅰ)求證:C1B⊥平面ABC;
(Ⅱ)E是棱CC1所在直線上的一點,若二面角A﹣B1E﹣B的正弦值為 ,求CE的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,且a,b,c成等比數(shù)列,若sinB= ,cosB= ,則a+c的值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知函數(shù)f(x)=(x+l)lnx﹣ax+a (a為正實數(shù),且為常數(shù))
(1)若f(x)在(0,+∞)上單調(diào)遞增,求a的取值范圍;
(2)若不等式(x﹣1)f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=mln(x+1)﹣nx在點(1,f(1))處的切線與y軸垂直,且 ,其中 m,n∈R.
(Ⅰ)求m,n的值,并求出f(x)的單調(diào)區(qū)間;
(Ⅱ)設g(x)=﹣x2+2x,確定非負實數(shù)a的取值范圍,使不等式f(x)+x≥ag(x)在[0,+∞)上恒成立.

查看答案和解析>>

同步練習冊答案