【題目】如圖所示,三棱柱ABC﹣A1B1C1中,已知AB⊥側(cè)面BB1C1C,AB=BC=1,BB1=2,∠BCC1=60°.
(Ⅰ)求證:C1B⊥平面ABC;
(Ⅱ)E是棱CC1所在直線(xiàn)上的一點(diǎn),若二面角A﹣B1E﹣B的正弦值為 ,求CE的長(zhǎng).

【答案】解:(Ⅰ)證明:因?yàn)锳B⊥平面BB1C1C,BC1平面BB1C1C,所以AB⊥BC1 ,
在△CBC1中,BC=1,CC1=BB1=2,∠BCC1=60°,
由余弦定理得:BC12=BC2+CC12﹣2BCCC1cos∠BCC1=12+22﹣2×1×2×cos60°=3,
所以B1C=
故BC2+BC12=CC12,所以BC⊥BC1 ,
又BC∩AB=B,∴C1B⊥平面ABC.
(Ⅱ)由(Ⅰ)可知,AB,BC,BC1兩兩垂直.以B為原點(diǎn),BC,BA,BC1所在直線(xiàn)
為x,y,z軸建立空間直角坐標(biāo)系.

則,則B(0,0,0),A(0,1,0),C(1,0,0),C1(0,0, ),B1(﹣1,0,
, ,令 ,∴
,
設(shè)平面AB1E的一個(gè)法向量為
,令z= ,則x= ,y=
,.∵AB⊥平面BB1C1C, 是平面的一個(gè)法向量,
|cos< >|= ,兩邊平方并化簡(jiǎn)得2λ2﹣5λ+3=0,所以λ=1或 (舍去).
∴CE=CC1=2.
【解析】(Ⅰ)證明AB⊥BC1 , 在△CBC1中,由余弦定理求解B1C,然后證明BC⊥BC1 , 利用直線(xiàn)與平面垂直的判定定理證明C1B⊥平面ABC.(Ⅱ)通過(guò)AB,BC,BC1兩兩垂直.以B為原點(diǎn),BC,BA,BC1所在直線(xiàn)為x,y,z軸建立空間直角坐標(biāo)系.求出相關(guān)點(diǎn)的坐標(biāo),求出平面AB1E的一個(gè)法向量,平面的一個(gè)法向量通過(guò)向量的數(shù)量積,推出λ的方程,求解即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax2+(1﹣2a)x﹣lnx(a∈R).
(1)求函數(shù)f(x)在區(qū)間[1,2]上的最大值;
(2)若A(x1 , y1),B(x2 , y2),C(x0 , y0)是函數(shù)f(x)圖象上不同的三點(diǎn),且x0= ,試判斷f′(x0)與 之間的大小關(guān)系,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】宋元時(shí)期數(shù)學(xué)名著《算學(xué)啟蒙》中有關(guān)于“松竹并生”的問(wèn)題,松長(zhǎng)五尺,竹長(zhǎng)兩尺,松日自半,竹日自倍,松竹何日而長(zhǎng)等,如圖是源于其思想的一個(gè)程序框圖,若輸入的a=10,b=4,則輸出的n=(
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn+2=2an , 等差數(shù)列{bn}的前n項(xiàng)和為T(mén)n , 且T2=S2=b3
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)令 ,求數(shù)列{cn}的前n項(xiàng)和Rn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,輸出的x的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A、B均為銳角,則cosA>sinB是△ABC為鈍角三角形的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電視臺(tái)推出一檔游戲類(lèi)綜藝節(jié)目,選手面對(duì)1﹣5號(hào)五扇大門(mén),依次按響門(mén)上的門(mén)鈴,門(mén)鈴會(huì)播放一段音樂(lè),選手需正確回答這首歌的名字,回答正確,大門(mén)打開(kāi),并獲得相應(yīng)的家庭夢(mèng)想基金,回答每一扇門(mén)后,選手可自由選擇帶著目前的獎(jiǎng)金離開(kāi),還是繼續(xù)挑戰(zhàn)后面的門(mén)以獲得更多的夢(mèng)想基金,但是一旦回答錯(cuò)誤,游戲結(jié)束并將之前獲得的所有夢(mèng)想基金清零;整個(gè)游戲過(guò)程中,選手有一次求助機(jī)會(huì),選手可以詢(xún)問(wèn)親友團(tuán)成員以獲得正確答案. 1﹣5號(hào)門(mén)對(duì)應(yīng)的家庭夢(mèng)想基金依次為3000元、6000元、8000元、12000元、24000元(以上基金金額為打開(kāi)大門(mén)后的累積金額,如第三扇大門(mén)打開(kāi),選手可獲基金總金額為8000元);設(shè)某選手正確回答每一扇門(mén)的歌曲名字的概率為pi(i=1,2,…,5),且pi= (i=1,2,…,5),親友團(tuán)正確回答每一扇門(mén)的歌曲名字的概率均為 ,該選手正確回答每一扇門(mén)的歌名后選擇繼續(xù)挑戰(zhàn)后面的門(mén)的概率均為
(1)求選手在第三扇門(mén)使用求助且最終獲得12000元家庭夢(mèng)想基金的概率;
(2)若選手在整個(gè)游戲過(guò)程中不使用求助,且獲得的家庭夢(mèng)想基金數(shù)額為X(元),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)|θ|< ,n為正整數(shù),數(shù)列{an}的通項(xiàng)公式an=sin tannθ,其前n項(xiàng)和為Sn
(1)求證:當(dāng)n為偶函數(shù)時(shí),an=0;當(dāng)n為奇函數(shù)時(shí),an=(﹣1) tannθ;
(2)求證:對(duì)任何正整數(shù)n,S2n= sin2θ[1+(﹣1)n+1tan2nθ].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A、B、C的對(duì)邊分別為a,b,c,且a=3,b=4,B= +A.
(1)求cosB的值;
(2)求sin2A+sinC的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案