【題目】如圖,平面四邊形ABCD中,E,F是AD,BD中點,,,將沿對角線BD折起至,使平面平面BCD,則四面體中,下列結論不正確的是( )
A.平面
B.異面直線CD與所成的角為
C.異面直線EF與所成的角為
D.直線與平面BCD所成的角為
科目:高中數(shù)學 來源: 題型:
【題目】已知在平面直角坐標系中,動點與兩定點,連線的斜率之積為,記點的軌跡為曲線.
(1)求曲線的方程;
(2)已知點,過原點且斜率為的直線與曲線交于兩點(點在第一象限),求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】國家文明城市評審委員會對甲、乙兩個城市是否能入圍“國家文明城市”進行走訪調查,派出10人的調查組,先后到甲、乙兩個城市的街道、社區(qū)進行問卷調查,然后打分(滿分100分),他們給出甲、乙兩個城市分數(shù)的莖葉圖如圖所示:
(1)請你用統(tǒng)計學的知識分析哪個城市更應該入圍“國家文明城市”,并說明理由;
(2)從甲、乙兩個城市的打分中各抽取2個,在已知有大于80分的條件下,求抽到乙城市的分數(shù)都小于80分的概率.
(參考數(shù)據(jù):, )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在四棱錐中,底面是且邊長為的菱形,側面為正三角形,其所在平面垂直于底面.
(1)若為邊的中點,求證:平面.
(2)求證:.
(3)若為邊的中點,能否在上找出一點,使平面 平面?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),集合.
(1)若集合中有且僅有個整數(shù),求實數(shù)的取值范圍;
(2)集合,若存在實數(shù),使得,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以下三個命題:①在勻速傳遞的產品生產流水線上,質檢員每10分鐘從中抽取一件產品進行某項指標檢測,這樣的抽樣是分層抽樣;②若兩個變量的線性相關性越強,則相關系數(shù)的絕對值越接近于1;③對分類變量與的隨機變量的觀測值來說,越小,判斷“與有關系”的把握越大;其中真命題的個數(shù)為( )
A.3B.2C.1D.0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】十九大以來,國家深入推進精準脫貧,加大資金投入,強化社會幫扶,為了更好的服務于人民,派調查組到某農村去考察和指導工作.該地區(qū)有100戶農民,且都從事水果種植,據(jù)了解,平均每戶的年收入為2萬元.為了調整產業(yè)結構,調查組和當?shù)卣疀Q定動員部分農民從事水果加工,據(jù)估計,若能動員戶農民從事水果加工,則剩下的繼續(xù)從事水果種植的農民平均每戶的年收入有望提高,而從事水果加工的農民平均每戶收入將為萬元.
(1)若動員戶農民從事水果加工后,要使從事水果種植的農民的總年收入不低于動員前從事水果種植的農民的總年收入,求的取值范圍;
(2)在(1)的條件下,要使這100戶農民中從事水果加工的農民的總收入始終不高于從事水果種植的農民的總收入,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點,直線的參數(shù)方程為(為參數(shù)),以為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為.
當時,判斷直線與曲線的位置關系;
若直線與曲線相切于點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的四個頂點恰好是一邊長為2,一內角為的菱形的四個頂點.
(1)求橢圓的方程;
(2)若直線交橢圓于兩點,在直線上存在點,使得為等邊三角形,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com