【題目】平頂山市公安局交警支隊依據(jù)《中華人民共和國道路交通安全法》第條規(guī)定:所有主干道路凡機(jī)動車途經(jīng)十字口或斑馬線,無論轉(zhuǎn)彎或者直行,遇有行人過馬路,必須禮讓行人,違反者將被處以元罰款,記分的行政處罰.如表是本市一主干路段監(jiān)控設(shè)備所抓拍的個月內(nèi),機(jī)動車駕駛員不“禮讓斑馬線”行為統(tǒng)計數(shù)據(jù):
月份 | |||||
違章駕駛員人數(shù) |
(Ⅰ)請利用所給數(shù)據(jù)求違章人數(shù)與月份之間的回歸直線方程;
(Ⅱ)預(yù)測該路段月份的不“禮讓斑馬線”違章駕駛員人數(shù).
參考公式:,.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一輛汽車從A市出發(fā)沿海岸一條筆直公路以的速度向東勻速行駛,汽車開動時,在A市南偏東方向距A市500km且與海岸距離為300km的海上B處有一艘快艇與汽車同時出發(fā),要把一份文件交給這輛汽車的司機(jī).
(1)快艇至少以多大的速度行駛才能把文件送到司機(jī)手中?
(2)求快艇以最小速度行駛時的行駛方向與所成角的大。
(3)若快艇每小時最快行駛,快艇應(yīng)如何行駛才能盡快把文件交到司機(jī)手中?最快需多長時間?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動點滿足: .
(1)求動點的軌跡的方程;
(2)設(shè)過點的直線與曲線交于兩點,點關(guān)于軸的對稱點為(點與點不重合),證明:直線恒過定點,并求該定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)是定義在上的函數(shù),并且滿足下面三個條件:(1)對正數(shù),都有;(2)當(dāng)時,;(3);
(1)求和的值;
(2)如果不等式成立,求的取值范圍;
(3)如果存在正數(shù),使不等式有解,求正數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線C1的參數(shù)方程為(t為參數(shù)),以O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ2(1+sin2θ)=2,點M的極坐標(biāo)為(,).
(1)求點M的直角坐標(biāo)和C2的直角坐標(biāo)方程;
(2)已知直線C1與曲線C2相交于A,B兩點,設(shè)線段AB的中點為N,求|MN|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解人們對“年月在北京召開的第十三屆全國人民代表大會第二次會議和政協(xié)第十三屆全國委員會第二次會議”的關(guān)注度,某部門從年齡在歲到歲的人群中隨機(jī)調(diào)查了人,并得到如圖所示的年齡頻率分布直方圖,在這人中關(guān)注度非常髙的人數(shù)與年齡的統(tǒng)計結(jié)果如表所示:
年齡 | 關(guān)注度非常高的人數(shù) |
(1)由頻率分布直方圖,估計這人年齡的中位數(shù)和平均數(shù);
(2)根據(jù)以上統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表,據(jù)此表,能否在犯錯誤的概率不超過的前提下,認(rèn)為以歲為分界點的不同人群對“兩會”的關(guān)注度存在差異?
(3)按照分層抽樣的方法從年齡在歲以下的人中任選六人,再從六人中隨機(jī)選兩人,求兩人中恰有一人年齡在歲以下的概率是多少.
歲以下 | 歲以上 | 總計 | |
非常高 | |||
一般 | |||
總計 |
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們把焦點相同且離心率互為倒數(shù)的橢圓和雙曲線稱為一對“相關(guān)曲線”.已知是一對相關(guān)曲線的焦點,分別是橢圓和雙曲線的離心率,若為它們在第一象限的交點,,則雙曲線的離心率( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭進(jìn)行理財投資,根據(jù)長期收益率市場預(yù)測,投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風(fēng)險型產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬元時兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元。
(1)分別寫出兩類產(chǎn)品的收益與投資額的函數(shù)關(guān)系式;
(2)該家庭現(xiàn)有20萬元資金,全部用于理財投資,怎樣分配資金才能獲得最大收益?其最大收益為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線經(jīng)過點,其傾斜角為,以原點為極點,以軸為非負(fù)半軸為極軸,與坐標(biāo)系取相同的長度單位,建立極坐標(biāo)系.設(shè)曲線的極坐標(biāo)方程為.
(1)若直線與曲線有公共點,求傾斜角的取值范圍;
(2)設(shè)為曲線上任意一點,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com