【題目】如圖,在三棱錐P-ABC中,D,E,F分別為PC,AC,AB的中點.已知PA⊥AC,PA=6,BC=8,DF=5.
求證:(1)直線PA∥平面DEF;
(2)平面BDE⊥平面ABC.
【答案】詳見解析
【解析】試題分析:(1)由D、E為PC、AC的中點,得出DE∥PA,從而得出PA∥平面DEF;(2)要證平面BDE⊥平面ABC,只需證DE⊥平面ABC,即證DE⊥EF,且DE⊥AC即可.
試題解析:
(1)∵D,E分別為棱PC,AC的中點,∴DE∥PA.
又∵PA平面DEF,DE平面DEF,
∴直線PA∥平面DEF.
(2)∵D、E、F分別為PC、AC、AB的中點,PA=6,BC=8,
∴DE∥PA,DE=PA=3,EF=BC=4.
又∵DF=5,故DF2=DE2+EF2,
∴∠DEF=90°,即DE⊥EF.
又PA⊥AC,DE∥PA,∴DE⊥AC.
∵AC∩EF=E,AC平面ABC,EF平面ABC,∴DE⊥平面ABC.
又DE平面BDE,∴平面BDE⊥平面ABC.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,等腰梯形中, , 于點, ,且.沿把折起到的位置(如圖),使.
(I)求證: 平面.
(II)求三棱錐的體積.
(III)線段上是否存在點,使得平面,若存在,指出點的位置并證明;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2+ex- (x<0)與g(x)=x2+ln(x+a)圖象上存在關于y軸對稱的點,則a的取值范圍是( )
A. (-∞,) B. (-∞,)
C. (-, ) D. (-, )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正四棱錐S-ABCD中,SA=AB=2,E,F,G分別為BC,SC,CD的中點.設P為線段FG上任意一點.
(1)求證:EP⊥AC;
(2)當P為線段FG的中點時,求直線BP與平面EFG所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐的底面是平行四邊形,側面是邊長為2的正三角形, , .
(Ⅰ)求證:平面平面;
(Ⅱ)設是棱上的點,當平面時,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,B1B=B1A=AB=BC,∠B1BC=90°,D為AC的中點,AB⊥B1D.
(1)求證:平面ABB1A1⊥平面ABC;
(2)在線段CC1(不含端點)上,是否存在點E,使得二面角E-B1D-B的余弦值為-?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),則下列結論正確的是( )
A. 導函數(shù)為
B. 函數(shù)f(x)的圖象關于直線對稱
C. 函數(shù)f(x)在區(qū)間上是增函數(shù)
D. 函數(shù)f(x)的圖象可由函數(shù)y=3cos 2x的圖象向右平移個單位長度得到
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是橢圓的左、右焦點,點在橢圓上,且離心率為
(1)求橢圓的方程;
(2)若的角平分線所在的直線與橢圓的另一個交點為為橢圓上的一點,當面積最大時,求點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com