【題目】如圖,正方形所在平面,M是的中點(diǎn),二面角的大小為.
(1)設(shè)l是平面與平面的交線,證明;
(2)在棱是否存在一點(diǎn)N,使為的二面角.若不存在,說(shuō)明理由:若存在,求長(zhǎng).
【答案】(1)見(jiàn)解析(2)存在,
【解析】
(1)先證明平面,再利用線面平行的性質(zhì)即得證;
(2)易知二面角的平面角,由此建立空間直角坐標(biāo)系,并求出各點(diǎn)的坐標(biāo),設(shè),求出平面的法向量,根據(jù)的二面角為,建立方程,解出即可得出結(jié)論.
解:(1)證明:∵四邊形為正方形,
∴,
又在平面內(nèi),不在平面內(nèi),
∴平面,
又平面過(guò)直線,且平面平面,
∴:
(2)∵正方形所在平面,
∴易知二面角的平面角即為,
以A為坐標(biāo)原點(diǎn),,,分別為x軸,y軸,z軸建立如圖所示的空間直角坐標(biāo)系,不妨設(shè)正方形的邊長(zhǎng)為2,
則,,,,設(shè),
易得平面的一個(gè)法向量為,
設(shè)平面的一個(gè)法向量為,又,,
則,則可取,
∴,解得,
故存在存在一點(diǎn)N,使為的二面角,且.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中,,,、分別為邊、的中點(diǎn),沿將折起,點(diǎn)折至處(與不重合),若、分別為線段、的中點(diǎn),則在折起過(guò)程中( )
A.可以與垂直
B.不能同時(shí)做到平面且平面
C.當(dāng)時(shí),平面
D.直線、與平面所成角分別為、,、能夠同時(shí)取得最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),且曲線上的點(diǎn)對(duì)應(yīng)的參數(shù),以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線的普通方程和極坐標(biāo)方程;
(2)若曲線上的兩點(diǎn)滿足,過(guò)作交于點(diǎn),求證:點(diǎn)在以為圓心的定圓上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的一個(gè)頂點(diǎn)為,離心率,直線交橢圓于、兩點(diǎn).
(1)若直線的方程為,求弦的長(zhǎng);
(2)如果的重心恰好為橢圓的右焦點(diǎn),求直線方程的一般式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班級(jí)在一次數(shù)學(xué)競(jìng)賽中為全班學(xué)生設(shè)置了一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)以及參與獎(jiǎng),各個(gè)獎(jiǎng)品的單價(jià)分別為:一等獎(jiǎng)元、二等獎(jiǎng)元、三等獎(jiǎng)元、參與獎(jiǎng)元,獲獎(jiǎng)人數(shù)的分配情況如圖,則以下說(shuō)法不正確的是( ).
A. 獲得參與獎(jiǎng)的人數(shù)最多
B. 各個(gè)獎(jiǎng)項(xiàng)中參與獎(jiǎng)的總費(fèi)用最高
C. 購(gòu)買(mǎi)每件獎(jiǎng)品費(fèi)用的平均數(shù)為元
D. 購(gòu)買(mǎi)的三等獎(jiǎng)的獎(jiǎng)品件數(shù)是一、二等獎(jiǎng)的獎(jiǎng)品件數(shù)和的二倍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,左頂點(diǎn)為,左焦點(diǎn)為,點(diǎn)在橢圓上,直線與橢圓交于, 兩點(diǎn),直線, 分別與軸交于點(diǎn), .
(Ⅰ)求橢圓的方程;
(Ⅱ)以為直徑的圓是否經(jīng)過(guò)定點(diǎn)?若經(jīng)過(guò),求出定點(diǎn)的坐標(biāo);若不經(jīng)過(guò),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】自2016年1月1日起,我國(guó)全面二孩政策正式實(shí)施,這次人口與生育政策的歷史性調(diào)整,使得“要不要再生一個(gè)”,“生二孩能休多久產(chǎn)假”等問(wèn)題成為千千萬(wàn)萬(wàn)個(gè)家庭在生育決策上避不開(kāi)的話題.為了解針對(duì)產(chǎn)假的不同安排方案形成的生育意愿,某調(diào)查機(jī)構(gòu)隨機(jī)抽取了200戶有生育二胎能力的適齡家庭進(jìn)行問(wèn)卷調(diào)查,得到如下數(shù)據(jù):
產(chǎn)假安排(單位:周) | 14 | 15 | 16 | 17 | 18 |
有生育意愿家庭數(shù) | 4 | 8 | 16 | 20 | 26 |
(1)若用表中數(shù)據(jù)所得的頻率代替概率,面對(duì)產(chǎn)假為14周與16周,估計(jì)某家庭有生育意愿的概率分別為多少?
(2)假設(shè)從5種不同安排方案中,隨機(jī)抽取2種不同安排分別作為備選方案,然后由單位根據(jù)單位情況自主選擇.
①求兩種安排方案休假周數(shù)和不低于32周的概率;
②如果用表示兩種方案休假周數(shù)之和.求隨機(jī)變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù), ,其中R, …為自然對(duì)數(shù)的底數(shù).
(Ⅰ)當(dāng)時(shí), 恒成立,求的取值范圍;
(Ⅱ)求證: (參考數(shù)據(jù): ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,是動(dòng)點(diǎn),以為直徑的圓與圓:內(nèi)切.
(1)求的軌跡的方程;
(2)設(shè)是圓與軸的交點(diǎn),過(guò)點(diǎn)的直線與交于兩點(diǎn),直線交直線于點(diǎn),求證:三點(diǎn)共線.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com