【題目】某車間在兩天內(nèi),每天生產(chǎn)10件某產(chǎn)品,其中第一天第二天分別生產(chǎn)了1件2件次品,而質(zhì)檢部每天要在生產(chǎn)的10件產(chǎn)品中隨意抽取4件進(jìn)行檢查,若發(fā)現(xiàn)有次品,則當(dāng)天的產(chǎn)品不能通過(guò).
(1)求兩天全部通過(guò)檢查的概率;
(2)若廠內(nèi)對(duì)該車間生產(chǎn)的產(chǎn)品質(zhì)量采用獎(jiǎng)懲制度,兩天全不通過(guò)檢查罰300元,通過(guò)1天,2天分別獎(jiǎng)300元900元.那么該車間在這兩天內(nèi)得到獎(jiǎng)金的數(shù)學(xué)期望是多少元?
【答案】(1).(2)(元)
【解析】
(1)由題意分別可得第一二天通過(guò)檢查的概率,由獨(dú)立事件的概率公式可得;
(2)記所得獎(jiǎng)金為ξ元,則ξ的取值為﹣300,300,900,分別求其概率可得數(shù)學(xué)期望.
(1)隨意抽取4件產(chǎn)品進(jìn)行檢查是隨機(jī)事件,而第一天有9件正品,第二天有8件正品,
第一天通過(guò)檢查的概率為.
第二天通過(guò)檢查的概率為.
因?yàn)榈谝惶斓诙鞕z查是否通過(guò)是相互獨(dú)立的,
所以兩天全部通過(guò)檢查的概率為.
(2)記所得獎(jiǎng)金為ξ元,則ξ的取值為﹣300,300,900 ,
由題意可得;
.
故(元).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】科學(xué)研究表明:人類對(duì)聲音有不的感覺(jué),這與聲音的強(qiáng)度單位:瓦平方米有關(guān)在實(shí)際測(cè)量時(shí),常用單位:分貝來(lái)表示聲音強(qiáng)弱的等級(jí),它與聲音的強(qiáng)度I滿足關(guān)系式:是常數(shù),其中瓦平方米如風(fēng)吹落葉沙沙聲的強(qiáng)度瓦平方米,它的強(qiáng)弱等級(jí)分貝.
已知生活中幾種聲音的強(qiáng)度如表:
聲音來(lái)源
聲音大小 | 風(fēng)吹落葉沙沙聲 | 輕聲耳語(yǔ) | 很嘈雜的馬路 |
強(qiáng)度瓦平方米 | |||
強(qiáng)弱等級(jí)分貝 | 10 | m | 90 |
求a和m的值
為了不影響正常的休息和睡眠,聲音的強(qiáng)弱等級(jí)一般不能超過(guò)50分貝,求此時(shí)聲音強(qiáng)度I的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“函數(shù)在區(qū)間上單調(diào)”是“函數(shù)在上有反函數(shù)”的( )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分又不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的定義域?yàn)閰^(qū)間,若對(duì)于內(nèi)任意,都有成立,則稱函數(shù)是區(qū)間的“函數(shù)”.
(1)判斷函數(shù)()是否是“函數(shù)”?說(shuō)明理由;
(2)已知,求證:函數(shù)()是“函數(shù)”;
(3)設(shè)函數(shù)是,()上的“函數(shù)”,,且存在使得,試探討函數(shù)在區(qū)間上零點(diǎn)個(gè)數(shù),并用圖象作出簡(jiǎn)要的說(shuō)明(結(jié)果不需要證明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一臺(tái)機(jī)器使用的時(shí)間較長(zhǎng),但還可以使用,它按不同的轉(zhuǎn)速生產(chǎn)出來(lái)的某機(jī)械零件有一些會(huì)有缺點(diǎn),每小時(shí)生產(chǎn)有缺點(diǎn)零件的多少,隨機(jī)器的運(yùn)轉(zhuǎn)的速度而變化,下表為抽樣試驗(yàn)的結(jié)果:
轉(zhuǎn)速x(轉(zhuǎn)/秒) | 2 | 4 | 5 | 6 | 8 |
每小時(shí)生產(chǎn)有缺點(diǎn)的零件數(shù)y(件) | 30 | 40 | 60 | 50 | 70 |
(1)畫散點(diǎn)圖;
(2)如果y對(duì)x有線性相關(guān)關(guān)系,求回歸直線方程;
(3)若實(shí)際生產(chǎn)中,允許每小時(shí)的產(chǎn)品中有缺點(diǎn)的零件最多為89個(gè),那么機(jī)器的運(yùn)轉(zhuǎn)速度應(yīng)控制在什么范圍內(nèi)?(參考數(shù)值:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高三(1)班的一次數(shù)學(xué)測(cè)試成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的破壞,可見部分如下:
試根據(jù)圖表中的信息解答下列問(wèn)題:
(1)求全班的學(xué)生人數(shù)及分?jǐn)?shù)在[70,80)之間的頻數(shù);
(2)為快速了解學(xué)生的答題情況,老師按分層抽樣的方法從位于[70,80),[80,90)和[90,100]分?jǐn)?shù)段的試卷中抽取8份進(jìn)行分析,再?gòu)闹腥芜x3人進(jìn)行交流,求交流的學(xué)生中,成績(jī)位于[70,80)分?jǐn)?shù)段的人數(shù)X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+2﹣alnx﹣bx(a>0).
(Ⅰ)若a=1,b=3,求函數(shù)y=f(x)在(1,f(1))處的切線方程;
(Ⅱ)若f(x1)=f(x2)=0,且x1≠x2,證明:f′()>0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠共有男女員工500人,現(xiàn)從中抽取100位員工對(duì)他們每月完成合格產(chǎn)品的件數(shù)統(tǒng)計(jì)如下:
每月完成合格產(chǎn)品的件數(shù)(單位:百件) | |||||
頻數(shù) | 10 | 45 | 35 | 6 | 4 |
男員工人數(shù) | 7 | 23 | 18 | 1 | 1 |
(1)其中每月完成合格產(chǎn)品的件數(shù)不少于3200件的員工被評(píng)為“生產(chǎn)能手”.由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并判斷是否有95%的把握認(rèn)為“生產(chǎn)能手”與性別有關(guān)?
非“生產(chǎn)能手” | “生產(chǎn)能手” | 合計(jì) | |
男員工 | |||
女員工 | |||
合計(jì) |
(2)為提高員工勞動(dòng)的積極性,工廠實(shí)行累進(jìn)計(jì)件工資制:規(guī)定每月完成合格產(chǎn)品的件數(shù)在定額2600件以內(nèi)的,計(jì)件單價(jià)為1元;超出件的部分,累進(jìn)計(jì)件單價(jià)為1.2元;超出件的部分,累進(jìn)計(jì)件單價(jià)為1.3元;超出400件以上的部分,累進(jìn)計(jì)件單價(jià)為1.4元.將這4段中各段的頻率視為相應(yīng)的概率,在該廠男員工中選取1人,女員工中隨機(jī)選取2人進(jìn)行工資調(diào)查,設(shè)實(shí)得計(jì)件工資(實(shí)得計(jì)件工資=定額計(jì)件工資+超定額計(jì)件工資)不少于3100元的人數(shù)為,求的分布列和數(shù)學(xué)期望.
附:,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校從高一年級(jí)學(xué)生中隨機(jī)抽取60名學(xué)生,將期中考試的物理成績(jī)(均為整數(shù))分成六段:,,,…,后得到如圖頻率分布直方圖.
(1)根據(jù)頻率分布直方圖,估計(jì)眾數(shù)和中位數(shù);
(2)用分層抽樣的方法從的學(xué)生中抽取一個(gè)容量為5的樣本,從這五人中任選兩人參加補(bǔ)考,求這兩人的分?jǐn)?shù)至少一人落在的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com