【題目】已知函數(shù)fx)=x2+2﹣alnxbxa>0).

Ⅰ)若a=1,b=3,求函數(shù)yfx)在(1,f(1))處的切線方程;

Ⅱ)若fx1)=fx2)=0,且x1x2,證明:f′()>0.

【答案】(Ⅰ);(Ⅱ)見解析.

【解析】

(Ⅰ)求fx)的導(dǎo)數(shù),可得切線的斜率,以及切點(diǎn),由點(diǎn)斜式方程可得切線方程;

(Ⅱ)由函數(shù)零點(diǎn)定義,兩方程相減可得兩個(gè)零點(diǎn)之間的關(guān)系,用變量集中的方法,把兩個(gè)零點(diǎn)集中為一個(gè)變量,求導(dǎo)數(shù),判斷單調(diào)性,即可得證..

解:()若a=1,b=3,fx)=x2+2﹣lnx﹣3x,

導(dǎo)數(shù)為f′(x)=2x﹣3,

可得在x=1處切線的斜率為﹣2,

f(1)=0,可得切線方程為y=﹣2(x﹣1),

即為2x+y﹣2=0;

(Ⅱ)證明:若fx1)=fx2)=0,且x1x2,

可得x12+2﹣alnx1bx1=0,x22+2﹣alnx2bx2=0,

兩式相減可得(x1x2)(x1+x2)﹣alnx1lnx2)﹣bx1x2)=0,

即有x1+x2ba,

可設(shè)x0

f′(x0)=2x0b=(x1+x2b)﹣

a

[ln]

[ln],

tt>1,可得f′(x0)=[lnt],

設(shè)ut)=lntt>1,

導(dǎo)數(shù)為u′(t)=>0,

可得ut)在t>1遞增,且u(1)=0,

可得ut)>u(1)=0,

lnt>0,

a>0,x2x1>0,可得f′(x0)>0,

綜上可得f′()>0.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,,,

(1)求證:;

(2)當(dāng)幾何體的體積等于時(shí),求四棱錐.的側(cè)面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1)求函數(shù)的最小值;

2)設(shè),討論函數(shù)的單調(diào)性;

3)斜率為的直線與曲線交于兩點(diǎn),

求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某車間在兩天內(nèi),每天生產(chǎn)10件某產(chǎn)品,其中第一天第二天分別生產(chǎn)了12件次品,而質(zhì)檢部每天要在生產(chǎn)的10件產(chǎn)品中隨意抽取4件進(jìn)行檢查,若發(fā)現(xiàn)有次品,則當(dāng)天的產(chǎn)品不能通過.

(1)求兩天全部通過檢查的概率;

2)若廠內(nèi)對該車間生產(chǎn)的產(chǎn)品質(zhì)量采用獎(jiǎng)懲制度,兩天全不通過檢查罰300元,通過1天,2天分別獎(jiǎng)300900元.那么該車間在這兩天內(nèi)得到獎(jiǎng)金的數(shù)學(xué)期望是多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】炎炎夏季,水蜜桃成為備受大家歡迎的一種水果,某果園的水蜜桃質(zhì)量分布如圖所示.

Ⅰ)求m的值;

Ⅱ)以頻率估計(jì)概率,若從該果園中隨機(jī)采摘5個(gè)水蜜桃,記質(zhì)量在300克以上(含300克)的個(gè)數(shù)為X,求X的分布列及數(shù)學(xué)期望;

Ⅲ)經(jīng)市場調(diào)查,該種水蜜桃在過去50天的銷售量(單位:千克)和價(jià)格(單位:元/千克)均為銷售時(shí)間t(天)的函數(shù),且銷售量近似地滿足f(t)=﹣3t+300(1≤t≤50,tN),前30天價(jià)格為g(t)=+20(1≤t≤30,tN),后20天價(jià)格為g(t)=30(31≤t≤50,tN),求日銷售額S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體是一個(gè)棱長為2的空心蔬菜大棚,由8個(gè)鋼結(jié)構(gòu)(地面沒有)組合搭建而成的,四個(gè)側(cè)面及頂上均被可采光的薄膜覆蓋,已知為柱上一點(diǎn)(不在點(diǎn)處),),菜農(nóng)需要在地面正方形內(nèi)畫出一條曲線將菜地分隔為兩個(gè)不同的區(qū)域來種植不同品種的蔬菜以加強(qiáng)管理,現(xiàn)已知點(diǎn)為地面正方形內(nèi)的曲線上任意一點(diǎn),設(shè)分別為在點(diǎn)處觀測的仰角.

1)若,請說明曲線是何種曲線,為什么?

2)若為柱的中點(diǎn),且時(shí),請求出點(diǎn)所在區(qū)域的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為,過橢圓的焦點(diǎn)且與長軸垂直的弦長為1

1)求橢圓C的方程;

2)設(shè)點(diǎn)M為橢圓上第一象限內(nèi)一動(dòng)點(diǎn),AB分別為橢圓的左頂點(diǎn)和下頂點(diǎn),直線MBx軸交于點(diǎn)C,直線MAy軸交于點(diǎn)D,求證:四邊形ABCD的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)若給定非零實(shí)數(shù),對于任意實(shí)數(shù),總存在非零常數(shù),使得恒成立,則稱函數(shù)上的類周期函數(shù),若函數(shù)上的22類周期函數(shù),且當(dāng)時(shí),又函數(shù).,使成立,則實(shí)數(shù)的取值范圍是_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)P、M、N分別是正方體的棱,AD,AB上非頂點(diǎn)的任意點(diǎn).

的外心必在的某一邊上;

的外心必在的內(nèi)部;

的垂心必是點(diǎn)A在平面PMN上的射影;

④若線段AP、AM、AN的長分別為a、b、c,.其中( ).

A. 只有①、④正確.

B. 只有③、④正確.

C. 只有②、③、④正確.

D. 只有②、③正確.

查看答案和解析>>

同步練習(xí)冊答案