【題目】設(shè)、是拋物線上的兩個(gè)不同的點(diǎn),是坐標(biāo)原點(diǎn),若直線與的斜率之積為,則下列結(jié)論正確的是( )
A.
B.以為直徑的圓面積的最小值為
C.直線過(guò)拋物線的焦點(diǎn)
D.點(diǎn)到直線的距離不大于
【答案】BCD
【解析】
考慮與軸垂直,設(shè)直線的方程為,根據(jù)題意求得的值,求出的值,可判斷A選項(xiàng)的正誤;可設(shè)直線的方程為,設(shè)點(diǎn)、,將直線的方程與拋物線的方程聯(lián)立,列出韋達(dá)定理,由直線與的斜率之積為,求得的值,并求得的最小值,可判斷B、C選項(xiàng)的正誤;利用點(diǎn)到直線的距離公式可判斷D選項(xiàng)的正誤.
對(duì)于A選項(xiàng),若與軸垂直,設(shè)直線為,
則,,,,,,
即、,此時(shí),A選項(xiàng)錯(cuò)誤;
對(duì)于B、C選項(xiàng),由題意可知直線斜率存在,設(shè)直線的方程為,
由,得,由,得,
設(shè)點(diǎn)、,則,,
,,
此時(shí)直線的方程為,恒過(guò)定點(diǎn),C選項(xiàng)正確;
因?yàn)?/span>,
所以,以為直徑的圓面積的最小值為,B選項(xiàng)正確;
對(duì)于D選項(xiàng),點(diǎn)到直線的距離為,D選項(xiàng)正確.
故選:BCD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為等差數(shù)列,為等比數(shù)列,.
(Ⅰ)求和的通項(xiàng)公式;
(Ⅱ)記的前項(xiàng)和為,求證:;
(Ⅲ)對(duì)任意的正整數(shù),設(shè)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,①已知點(diǎn),直線:,動(dòng)點(diǎn)滿足到點(diǎn)的距離與到直線的距離之比為;②已知圓的方程為,直線為圓的切線,記點(diǎn)到直線的距離分別為,動(dòng)點(diǎn)滿足;③點(diǎn),分別在軸,軸上運(yùn)動(dòng),且,動(dòng)點(diǎn)滿足.
(1)在①,②,③這三個(gè)條件中任選一個(gè),求動(dòng)點(diǎn)的軌跡方程;
(2)記(1)中的軌跡為,經(jīng)過(guò)點(diǎn)的直線交于,兩點(diǎn),若線段的垂直平分線與軸相交于點(diǎn),求點(diǎn)縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左,右兩個(gè)焦點(diǎn)為、,拋物線與橢圓有公共焦點(diǎn).且兩曲線、在第一象限的交點(diǎn)的橫坐標(biāo)為.
(1)求橢圓和拋物線的方程;
(2)直線與拋物線的交點(diǎn)為、(為坐標(biāo)原點(diǎn)),與橢圓的交點(diǎn)為、(在線段上),且.問(wèn)滿足條件的直線有幾條,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱中,,是的中點(diǎn),.
(Ⅰ)求證:平面;
(Ⅱ)異面直線和所成角的余弦值為,求幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求曲線在處的切線方程,并證明:.
(2)當(dāng)時(shí),方程有兩個(gè)不同的實(shí)數(shù)根,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,.
(1)討論函數(shù)的單調(diào)性;
(2)若存在與函數(shù),的圖象都相切的直線,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線的焦點(diǎn)為,是拋物線的準(zhǔn)線與軸的交點(diǎn),直線經(jīng)過(guò)焦點(diǎn)且與拋物線相交于、兩點(diǎn),直線、分別交軸于、兩點(diǎn),記、的面積分別為、.
(1)求證:;
(2)若恒成立,求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠為提高生產(chǎn)效率,需引進(jìn)一條新的生產(chǎn)線投入生產(chǎn),現(xiàn)有兩條生產(chǎn)線可供選擇,生產(chǎn)線①:有A,B兩道獨(dú)立運(yùn)行的生產(chǎn)工序,且兩道工序出現(xiàn)故障的概率依次是0.01,0.05.若兩道工序都沒(méi)有出現(xiàn)故障,則生產(chǎn)成本為16萬(wàn)元;若A工序出現(xiàn)故障,則生產(chǎn)成本增加2萬(wàn)元;若B工序出現(xiàn)故障,則生產(chǎn)成本增加3萬(wàn)元;若A,B兩道工序都出現(xiàn)故障,則生產(chǎn)成本增加5萬(wàn)元.生產(chǎn)線②:有a,b兩道獨(dú)立運(yùn)行的生產(chǎn)工序,且兩道工序出現(xiàn)故障的概率依次是0.04,0.02.若兩道工序都沒(méi)有出現(xiàn)故障,則生產(chǎn)成本為15萬(wàn)元;若a工序出現(xiàn)故障,則生產(chǎn)成本增加8萬(wàn)元;若b工序出現(xiàn)故障,則生產(chǎn)成本增加5萬(wàn)元;若a,b兩道工序都出現(xiàn)故障,則生產(chǎn)成本增加13萬(wàn)元.
(1)若選擇生產(chǎn)線②,求生產(chǎn)成本恰好為20萬(wàn)元的概率;
(2)為最大限度節(jié)約生產(chǎn)成本,你會(huì)給工廠建議選擇哪條生產(chǎn)線?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com