【題目】某工廠為提高生產(chǎn)效率,需引進一條新的生產(chǎn)線投入生產(chǎn),現(xiàn)有兩條生產(chǎn)線可供選擇,生產(chǎn)線①:有A,B兩道獨立運行的生產(chǎn)工序,且兩道工序出現(xiàn)故障的概率依次是0.01,0.05.若兩道工序都沒有出現(xiàn)故障,則生產(chǎn)成本為16萬元;若A工序出現(xiàn)故障,則生產(chǎn)成本增加2萬元;若B工序出現(xiàn)故障,則生產(chǎn)成本增加3萬元;若A,B兩道工序都出現(xiàn)故障,則生產(chǎn)成本增加5萬元.生產(chǎn)線②:有a,b兩道獨立運行的生產(chǎn)工序,且兩道工序出現(xiàn)故障的概率依次是0.04,0.02.若兩道工序都沒有出現(xiàn)故障,則生產(chǎn)成本為15萬元;若a工序出現(xiàn)故障,則生產(chǎn)成本增加8萬元;若b工序出現(xiàn)故障,則生產(chǎn)成本增加5萬元;若a,b兩道工序都出現(xiàn)故障,則生產(chǎn)成本增加13萬元.
(1)若選擇生產(chǎn)線②,求生產(chǎn)成本恰好為20萬元的概率;
(2)為最大限度節(jié)約生產(chǎn)成本,你會給工廠建議選擇哪條生產(chǎn)線?請說明理由.
【答案】(1);(2)選生產(chǎn)線②;答案見解析.
【解析】
(1)根據(jù)生產(chǎn)線②的條件,直接計算,可得結果.
(2)分別計算生產(chǎn)線①,生產(chǎn)線②增加的生產(chǎn)成本的數(shù)學期望,然后進行比較,可得結果.
(1)若選擇生產(chǎn)線②,生產(chǎn)成本恰好為20萬元,
即a工序不出現(xiàn)故障b工序出現(xiàn)故障,
故生產(chǎn)成本恰好為20萬元的概率為.
(2)若選擇生產(chǎn)線①,設增加的生產(chǎn)成本為(萬元),則的可能取值為0,2,3,5.
,
,
,
.
所以(萬元),
故選生產(chǎn)線①的生產(chǎn)成本期望值為(萬元).
若選生產(chǎn)線②,設增加的生產(chǎn)成本為,則的可能取值為0,8,5,13.
,
,
,
.
所以(萬元),
選生產(chǎn)線②的生產(chǎn)成本期望值為(萬元),
故應選生產(chǎn)線②.
科目:高中數(shù)學 來源: 題型:
【題目】設、是拋物線上的兩個不同的點,是坐標原點,若直線與的斜率之積為,則下列結論正確的是( )
A.
B.以為直徑的圓面積的最小值為
C.直線過拋物線的焦點
D.點到直線的距離不大于
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在四邊形中,,,,,,是上的點,,為的中點.將沿折起到的位置,使得,如圖2.
(1)求證:平面平面;
(2)點在線段上,當直線與平面所成角的正弦值為時,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】Keep是一款具有社交屬性的健身APP,致力于提供健身教學、跑步、騎行、交友及健身飲食指導、裝備購買等一站式運動解決方案.Keep可以讓你隨時隨地進行鍛煉,記錄你每天的訓練進程.不僅如此,它還可以根據(jù)不同人的體質(zhì),制定不同的健身計劃.小明根據(jù)Keep記錄的2019年1月至2019年11月期間每月跑步的里程(單位:十公里)數(shù)據(jù)整理并繪制了下面的折線圖.根據(jù)該折線圖,下列結論正確的是( )
A.月跑步里程最小值出現(xiàn)在2月
B.月跑步里程逐月增加
C.月跑步里程的中位數(shù)為5月份對應的里程數(shù)
D.1月至5月的月跑步里程相對于6月至11月波動性更小
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從年底開始,非洲東部的肯尼亞等國家爆發(fā)出了一場嚴重的蝗蟲災情.目前,蝗蟲已抵達烏干達和坦桑尼亞,并向西亞和南亞等地區(qū)蔓延.蝗蟲危害大,主要危害禾本科植物,能對農(nóng)作物造成嚴重傷害,每只蝗蟲的平均產(chǎn)卵數(shù)和平均溫度有關,現(xiàn)收集了以往某地的組數(shù)據(jù),得到下面的散點圖及一些統(tǒng)計量的值.
平均溫度 | |||||||
平均產(chǎn)卵數(shù)個 |
表中,.
(1)根據(jù)散點圖判斷,與(其中為自然對數(shù)的底數(shù))哪一個更適宜作為平均產(chǎn)卵數(shù)關于平均溫度的回歸方程類型?(給出判斷即可,不必說明理由)并由判斷結果及表中數(shù)據(jù),求出關于的回歸方程.(結果精確到小數(shù)點后第三位)
(2)根據(jù)以往統(tǒng)計,該地每年平均溫度達到以上時蝗蟲會造成嚴重傷害,需要人工防治,其他情況均不需要人工防治,記該地每年平均溫度達到以上的概率為.
①記該地今后年中,恰好需要次人工防治的概率為,求取得最大值時相應的概率;
②根據(jù)①中的結論,當取最大值時,記該地今后年中,需要人工防治的次數(shù)為,求的數(shù)學期望和方差.
附:對于一組數(shù)據(jù)、、、,其回歸直線的斜率和截距的最小二乘法估計分別為:,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在新冠病毒疫情爆發(fā)期間,口罩成為了個人的必需品.已知某藥店有4種不同類型的口罩,,,,其中型口罩僅剩1只(其余3種庫存足夠).今甲、乙等5人先后在該藥店各購買了1只口罩,統(tǒng)計發(fā)現(xiàn)他們恰好購買了3種不同類型的口罩,則所有可能的購買方式共有( )
A.330種B.345種C.360種D.375種
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(是自然對數(shù)的底數(shù)).證明:
(1)存在唯一的極值點;
(2)有且僅有兩個實根,且兩個實根互為相反數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com