【題目】為迎接“五一國際勞動(dòng)節(jié)”,某商場規(guī)定購買超過6000元商品的顧客可以參與抽獎(jiǎng)活動(dòng)現(xiàn)有甲品牌和乙品牌的掃地機(jī)器人作為獎(jiǎng)品,從這兩種品牌的掃地機(jī)器人中各隨機(jī)抽取6臺(tái)檢測它們充滿電后的工作時(shí)長相關(guān)數(shù)據(jù)見下表(工作時(shí)長單位:分)
機(jī)器序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 |
甲品牌工作時(shí)長/分 | 220 | 180 | 210 | 220 | 200 | 230 |
乙品牌工作時(shí)長/分 | 200 | 190 | 240 | 230 | 220 | 210 |
(1)根據(jù)所提供的數(shù)據(jù),計(jì)算抽取的甲品牌的掃地機(jī)器人充滿電后工作時(shí)長的平均數(shù)與方差;
(2)從乙品牌被抽取的6臺(tái)掃地機(jī)器人中隨機(jī)抽出3臺(tái)掃地機(jī)器人,記抽出的掃地機(jī)器人充滿電后工作時(shí)長不低于220分鐘的臺(tái)數(shù)為,求的分布列與數(shù)學(xué)期望.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的導(dǎo)函數(shù)是偶函數(shù),若方程在區(qū)間(其中為自然對數(shù)的底)上有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過點(diǎn)的動(dòng)直線l與y軸交于點(diǎn),過點(diǎn)T且垂直于l的直線與直線相交于點(diǎn)M.
(1)求M的軌跡方程;
(2)設(shè)M位于第一象限,以AM為直徑的圓與y軸相交于點(diǎn)N,且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高一班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如圖.
1求分?jǐn)?shù)在的頻數(shù)及全班人數(shù);
2求分?jǐn)?shù)在之間的頻數(shù),并計(jì)算頻率分布直方圖中間矩形的高;
3若要從分?jǐn)?shù)在之間的試卷中任取兩份分析學(xué)生失分情況,求在抽取的試卷中,至少有一份分?jǐn)?shù)在之間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(為實(shí)數(shù)).
(1)求曲線的普通方程與曲線的直角坐標(biāo)方程;
(2)當(dāng)時(shí),設(shè)、分別為曲線和曲線上的動(dòng)點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正四棱錐的底面邊長和高都為2.現(xiàn)從該棱錐的5個(gè)頂點(diǎn)中隨機(jī)選取3個(gè)點(diǎn)構(gòu)成三角形,設(shè)隨機(jī)變量表示所得三角形的面積.
(1)求概率的值;
(2)求隨機(jī)變量的概率分布及其數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為圓上一點(diǎn),過點(diǎn)作軸的垂線交軸于點(diǎn),點(diǎn)滿足
(1)求動(dòng)點(diǎn)的軌跡方程;
(2)設(shè)為直線上一點(diǎn),為坐標(biāo)原點(diǎn),且,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某烘焙店加工一個(gè)成本為60元的蛋糕,然后以每個(gè)120元的價(jià)格出售,如果當(dāng)天賣不完,剩下的這種蛋糕作餐廚垃圾處理.
(1)若烘焙店一天加工16個(gè)這種蛋糕,,求當(dāng)天的利潤(單位:元)關(guān)于當(dāng)天需求量(單位:個(gè),)的函數(shù)解析式;
(2)烘焙店記錄了100天這種蛋糕的日需求量(單位:個(gè)),整理得下表:
日需求量 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數(shù) | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
①若烘焙店一天加工16個(gè)這種蛋糕,表示當(dāng)天的利潤(單位:元),求的分布列與數(shù)學(xué)期望及方差;
②若烘焙店一天加工16個(gè)或17個(gè)這種蛋糕,僅從獲得利潤大的角度考慮,你認(rèn)為應(yīng)加工16個(gè)還是17個(gè)?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax﹣(a+2)lnx2,其中a∈R.
(1)當(dāng)a=4時(shí),求函數(shù)f(x)的極值;
(2)試討論函數(shù)f(x)在(1,e)上的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com