【題目】隨著電子商務(wù)的興起,網(wǎng)上銷售為人們帶來(lái)了諸多便利.商務(wù)部預(yù)計(jì),到2020年,網(wǎng)絡(luò)銷售占比將達(dá)到.網(wǎng)購(gòu)的發(fā)展同時(shí)促進(jìn)了快遞業(yè)的發(fā)展,現(xiàn)有甲、乙兩個(gè)快遞公司,每位打包工平均每天打包數(shù)量在范圍內(nèi).為擴(kuò)展業(yè)務(wù),現(xiàn)招聘打包工.兩公司提供的工資方案如下:甲公司打包工每天基礎(chǔ)工資64元,且每天每打包一件快遞另賺1元;乙公司打包工無(wú)基礎(chǔ)工資,如果每天打包量不超過(guò)240件,則每打包一件快遞可賺1.2元;如果當(dāng)天打包量超過(guò)240件,則超出的部分每件賺1.8元.

下圖為隨機(jī)抽取的打包工每天需要打包數(shù)量的頻率分布直方圖,以打包量的頻率作為各打包量發(fā)生的概率.(同一組中的數(shù)據(jù)用該組區(qū)間的中間值作代表).

(1)(i)以每天打包量為自變量,寫出乙公司打包工的收入函數(shù)

(ii)若打包工小李是乙公司員工,求小李一天收入不低于324元的概率;

(2)某打包工在甲、乙兩個(gè)快遞公司中選擇一個(gè)公司工作,如果僅從日平均收入的角度考慮,請(qǐng)利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為該打包工作出選擇,并說(shuō)明理由.

【答案】(1)(i);(ii)0.4;(2)建議該打包工去甲快遞公司工作.

【解析】

(1)(i)乙公司打包工的收入函數(shù);(ii)由,解得,再求小李一天收入不低于324元的概率;(2)設(shè)打包工在甲、乙兩個(gè)快遞公司工作的日平均收入為,先列出打包工在甲、乙兩個(gè)快遞公司工作的收入情況表,再求,,比較它們的大小即得解.

解:(1)(i)當(dāng)時(shí),y=1.2x

當(dāng)時(shí),y=1.2×240+(x-240)×1.8=1.8x-144

所以,

(ii)由,解得

∴小李一天收入不低于324元的概率為.

(2)設(shè)打包工在甲、乙兩個(gè)快遞公司工作的日平均收入為,,用頻率估計(jì)概率,則打包工在甲、乙兩個(gè)快遞公司工作的收入情況為

日打包量

210

230

250

270

290

甲公司日收入

274

294

314

334

354

乙公司日收入

252

276

306

342

378

.

因?yàn)?/span>,故從日平均收入的角度考慮,建議該打包工去甲快遞公司工作.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在棱長(zhǎng)為2的正方體中,點(diǎn)是正方體棱上一點(diǎn),.

①若,則滿足條件的點(diǎn)的個(gè)數(shù)為______;

②若滿足的點(diǎn)的個(gè)數(shù)為6,則的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓E的方程為y21,其左焦點(diǎn)和右焦點(diǎn)分別為F1F2,P是橢圓E上位于第一象限的一點(diǎn)

1)若三角形PF1F2的面積為,求點(diǎn)P的坐標(biāo);

2)設(shè)A1,0),記線段PA的長(zhǎng)度為d,求d的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年的天貓“雙11”交易金額又創(chuàng)新高,達(dá)到2684億元,物流爆增.某機(jī)構(gòu)為了了解網(wǎng)購(gòu)者對(duì)收到快遞的滿意度進(jìn)行調(diào)查,對(duì)某市5000名網(wǎng)購(gòu)者發(fā)出滿意度調(diào)查評(píng)分表,收集并隨機(jī)抽取了200名網(wǎng)購(gòu)者的調(diào)查評(píng)分(評(píng)分在70100分之間),其頻率分布直方圖如圖,評(píng)分在95分及以上確定為“非常滿意”.

1)求的值;

2)以樣本的頻率作概率,試估計(jì)本次調(diào)查的網(wǎng)購(gòu)者中“非常滿意”的人數(shù);

3)按分層抽樣的方法,從評(píng)分在90分及以上的網(wǎng)購(gòu)者中抽取6人,再?gòu)倪@6人中隨機(jī)地選取2人,求至少選到一個(gè)“非常滿意”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程是t是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是。

(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)若兩曲線交點(diǎn)為,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表是某電器銷售公司2018年度各類電器營(yíng)業(yè)收入占比和凈利潤(rùn)占比統(tǒng)計(jì)表:

空調(diào)類

冰箱類

小家電類

其它類

營(yíng)業(yè)收入占比

凈利潤(rùn)占比

則下列判斷中不正確的是( )

A. 該公司2018年度冰箱類電器營(yíng)銷虧損

B. 該公司2018年度小家電類電器營(yíng)業(yè)收入和凈利潤(rùn)相同

C. 該公司2018年度凈利潤(rùn)主要由空調(diào)類電器銷售提供

D. 剔除冰箱類電器銷售數(shù)據(jù)后,該公司2018年度空調(diào)類電器銷售凈利潤(rùn)占比將會(huì)降低

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓與拋物線y2x有一個(gè)相同的焦點(diǎn),且該橢圓的離心率為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過(guò)點(diǎn)P(0,1)的直線與該橢圓交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),若,求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)為橢圓上任意一點(diǎn),直線與圓交于兩點(diǎn),點(diǎn)為橢圓的左焦點(diǎn).

(Ⅰ)求橢圓的離心率及左焦點(diǎn)的坐標(biāo);

(Ⅱ)求證:直線與橢圓相切;

(Ⅲ)判斷是否為定值,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某幼兒園舉辦“yue”主題系列活動(dòng)——“悅”動(dòng)越健康親子運(yùn)動(dòng)打卡活動(dòng),為了解小朋友堅(jiān)持打卡的情況,對(duì)該幼兒園所有小朋友進(jìn)行了調(diào)查,調(diào)查結(jié)果如下表:

打卡天數(shù)

17

18

19

20

21

男生人數(shù)

3

5

3

7

2

女生人數(shù)

3

5

5

7

3

1)根據(jù)上表數(shù)據(jù),求該幼兒園男生平均打卡的天數(shù);

2)若從打卡21天的小朋友中任選2人交流心得,求選到男生和女生各1人的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案