【題目】已知橢圓E的方程為y2=1,其左焦點和右焦點分別為F1,F2,P是橢圓E上位于第一象限的一點
(1)若三角形PF1F2的面積為,求點P的坐標;
(2)設A(1,0),記線段PA的長度為d,求d的最小值.
【答案】(1)P(1,) (2)
【解析】
(1)設P(x,y);,根據(jù)三角形PF1F2的面積為列等式解得,再代入橢圓方程可得,即可得到答案;
(2)根據(jù)兩點間的距離公式得到的函數(shù)關系式,再根據(jù)二次函數(shù)求最值可得結果.
橢圓E的方程為y2=1,其左焦點和右焦點分別為F1,F2,
所以:橢圓的頂點坐標(±2,0);(0,±1),焦點:F1(,0),F2(,0),
|F1F2|=2;
P是橢圓E上位于第一象限的一點,設P(x,y);;
(1)若三角形PF1F2的面積為,即:|F1F2|×y;
解得:y,
因為P是橢圓E上位于第一象限的一點,滿足橢圓的方程,代入橢圓方程得:x=1,
所以:點P的坐標P(1,);
(2)設A(1,0),記線段PA的長度為d,P是橢圓E上位于第一象限的一點,
所以:d.
因為,所以時,d有最小值,
所以d的最小值d.
科目:高中數(shù)學 來源: 題型:
【題目】某工廠有甲,乙兩個車間生產同一種產品,甲車間有工人人,乙車間有工人人,為比較兩個車間工人的生產效率,采用分層抽樣的方法抽取工人,甲車間抽取的工人記作第一組,乙車間抽取的工人記作第二組,并對他們中每位工人生產完成的一件產品的事件(單位:)進行統(tǒng)計,按照進行分組,得到下列統(tǒng)計圖.
分別估算兩個車間工人中,生產一件產品時間少于的人數(shù);
分別估計兩個車間工人生產一件產品時間的平均值,并推測車哪個車間工人的生產效率更高?
從第一組生產時間少于的工人中隨機抽取人,求抽取人中,至少人生產時間少于的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】蘋果可按果徑(最大橫切面直徑,單位:.)分為五個等級:時為1級,時為2級,時為3級,時為4級,時為5級.不同果徑的蘋果,按照不同外觀指標又分為特級果、一級果、二級果.某果園采摘蘋果10000個,果徑均在內,從中隨機抽取2000個蘋果進行統(tǒng)計分析,得到如圖1所示的頻率分布直方圖,圖2為抽取的樣本中果徑在80以上的蘋果的等級分布統(tǒng)計圖.
(1)假設服從正態(tài)分布,其中的近似值為果徑的樣本平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點值代替),,試估計采摘的10000個蘋果中,果徑位于區(qū)間的蘋果個數(shù);
(2)已知該果園今年共收獲果徑在80以上的蘋果,且售價為特級果12元,一級果10元,二級果9元.設該果園售出這蘋果的收入為,以頻率估計概率,求的數(shù)學期望.
附:若隨機變量服從正態(tài)分布,則
,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,A為圓O1上任意一點,點D在線段上.,已知,.
(1)求點D的軌跡方程H;
(2)若直線與方程H所表示的圖像交于E,F兩點,是橢圓上任意一點.若OG平分弦EF,且,,試判斷四邊形OEGF形狀并證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線:,焦點,如果存在過點的直線與拋物線交于不同的兩點.,使得,則稱點為拋物線的“分點”.
(1)如果,直線:,求的值;
(2)如果為拋物線的“分點”,求直線的方程;
(3)證明點不是拋物線的“2分點”;
(4)如果是拋物線的“2分點”,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設拋物線Γ的方程為y2=4x,點P的坐標為(1,1).
(1)過點P,斜率為﹣1的直線l交拋物線Γ于U,V兩點,求線段UV的長;
(2)設Q是拋物線Γ上的動點,R是線段PQ上的一點,滿足2,求動點R的軌跡方程;
(3)設AB,CD是拋物線Γ的兩條經(jīng)過點P的動弦,滿足AB⊥CD.點M,N分別是弦AB與CD的中點,是否存在一個定點T,使得M,N,T三點總是共線?若存在,求出點T的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國剪紙是一種用剪刀或刻刀在紙上剪刻花紋,用于裝點生活或配合其他民俗活動的民間藝術;蘊含了極致的數(shù)學美和豐富的傳統(tǒng)文化信息,現(xiàn)有一幅剪紙的設計圖,其中的4個小圓均過正方形的中心,且內切于正方形的兩鄰邊.若在正方形內隨機取一點,則該點取自黑色部分的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著電子商務的興起,網(wǎng)上銷售為人們帶來了諸多便利.商務部預計,到2020年,網(wǎng)絡銷售占比將達到.網(wǎng)購的發(fā)展同時促進了快遞業(yè)的發(fā)展,現(xiàn)有甲、乙兩個快遞公司,每位打包工平均每天打包數(shù)量在范圍內.為擴展業(yè)務,現(xiàn)招聘打包工.兩公司提供的工資方案如下:甲公司打包工每天基礎工資64元,且每天每打包一件快遞另賺1元;乙公司打包工無基礎工資,如果每天打包量不超過240件,則每打包一件快遞可賺1.2元;如果當天打包量超過240件,則超出的部分每件賺1.8元.
下圖為隨機抽取的打包工每天需要打包數(shù)量的頻率分布直方圖,以打包量的頻率作為各打包量發(fā)生的概率.(同一組中的數(shù)據(jù)用該組區(qū)間的中間值作代表).
(1)(i)以每天打包量為自變量,寫出乙公司打包工的收入函數(shù);
(ii)若打包工小李是乙公司員工,求小李一天收入不低于324元的概率;
(2)某打包工在甲、乙兩個快遞公司中選擇一個公司工作,如果僅從日平均收入的角度考慮,請利用所學的統(tǒng)計學知識為該打包工作出選擇,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓,為左焦點,為上頂點,為右頂點,若,拋物線的頂點在坐標原點,焦點為.
(1)求的標準方程;
(2)是否存在過點的直線,與和交點分別是和,使得?如果存在,求出直線的方程;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com